
Programming IS Logic IS Math

Nathan Jarus

December 8, 2016



Propositions As Types

I Standard types correspond to pretty simple statements
I For example: int corresponds to “This is an integer” and 5

is a proof of that statement

I But, there is no reason we can’t imagine more complex types
with more interesting statements

I int a[5] says “This array has 5 elements, each of which is
an integer”

I The Curry-Howard Correspondence says
I Types correspond to logical statements
I Values correspond to proofs of those statements



Propositions As Types

I Standard types correspond to pretty simple statements
I For example: int corresponds to “This is an integer” and 5

is a proof of that statement

I But, there is no reason we can’t imagine more complex types
with more interesting statements

I int a[5] says “This array has 5 elements, each of which is
an integer”

I The Curry-Howard Correspondence says
I Types correspond to logical statements
I Values correspond to proofs of those statements



Connecting Statements: AND

I We know that if we have two proven statements A and B, we
can prove “A and B”

I How would we encode this idea in a type?

template<class A, class B>

struct Pair {

A first;

B second;

};

I Pair says “If you have an element of type A and an

element of type B , you can construct an element of type

Pair<A,B> .”

I In Pair<int,char> p = {7,‘?’} , p is a proof of the

claim “ int and char ”



Connecting Statements: AND

I We know that if we have two proven statements A and B, we
can prove “A and B”

I How would we encode this idea in a type?

template<class A, class B>

struct Pair {

A first;

B second;

};

I Pair says “If you have an element of type A and an

element of type B , you can construct an element of type

Pair<A,B> .”

I In Pair<int,char> p = {7,‘?’} , p is a proof of the

claim “ int and char ”



Connecting Statements: IF-THEN

I We want something that says “If you have an A , then you

can get a B .” What programming concept is this?

B implication(A a);

I If you have a of type A , then implication(a) will give

you something of type B .

I In logical terms, implication transforms a proof of A into

a proof of B .



Connecting Statements: IF-THEN

I We want something that says “If you have an A , then you

can get a B .” What programming concept is this?

B implication(A a);

I If you have a of type A , then implication(a) will give

you something of type B .

I In logical terms, implication transforms a proof of A into

a proof of B .



Connecting Statements: OR
I The last logical connector we’re missing is OR. How would we

represent one of these?
I We want something we can construct given either something

of type A or of type B .

const bool LEFT=false;

const bool RIGHT=true;

template<class A, class B>

struct Either {

bool side;

union {

A a;

B b;

} item;

};

Either<int,char> e =

{LEFT,{.a = 5}};

switch(e.side) {

case LEFT:

cout << "I’m an int! "

<< e.item.a << endl;

break;

case RIGHT:

cout << "I’m a char! "

<< e.item.b << endl;

break;

}



How neat is that?

I So this correspondence between logic and programming
actually helps us discover new ideas for programming!

I You can use this to, for instance, return either a result or an
error from a function.

I Returning an Either forces you to consider both options–no
forgetting to check if you got an error!



Algebra

I Suppose Bob = {1,2,3} and Frog = {,,/} ,
I How many Pair<Bob, Frog> values are there?

I How many Either<Bob, Frog> values are there?

I If there are x values of type A and y values of type B ,

I Pair<A,B> has x ∗ y values, so it is a product, A × B

I Either<A,B> has x + y values, so it is a sum, A + B

I Based on these ideas, you can make an algebra of types!



Algebra

I Suppose Bob = {1,2,3} and Frog = {,,/} ,
I How many Pair<Bob, Frog> values are there?

I How many Either<Bob, Frog> values are there?

I If there are x values of type A and y values of type B ,

I Pair<A,B> has x ∗ y values, so it is a product, A × B

I Either<A,B> has x + y values, so it is a sum, A + B

I Based on these ideas, you can make an algebra of types!


