
What is version control?

I Keeps track of changes to your code.

I You don’t have to worry about accidentally losing or deleting
code.

I You can experiment and reset to a known good state.

I Makes collaborating with others easier.

What is git?

I ‘the stupid content tracker’

I Distributed - everything is kept on your local machine.

I ‘Repository’ - a collection of code and history.

I ‘Commit’ - a chunk of saved changes.



What is version control?

I Keeps track of changes to your code.

I You don’t have to worry about accidentally losing or deleting
code.

I You can experiment and reset to a known good state.

I Makes collaborating with others easier.

What is git?

I ‘the stupid content tracker’

I Distributed - everything is kept on your local machine.

I ‘Repository’ - a collection of code and history.

I ‘Commit’ - a chunk of saved changes.



Getting Started

I git init Makes a new empty git repository.

I git add FILE Adds changes in FILE to the next commit.

I git status Shows the status of the repository.

I git config --global user.name NAME

I git config --global user.email EMAIL

I git config --global core.editor vim



Getting Started

I git init Makes a new empty git repository.

I git add FILE Adds changes in FILE to the next commit.

I git status Shows the status of the repository.

I git config --global user.name NAME

I git config --global user.email EMAIL

I git config --global core.editor vim



Committing

git commit -m ‘‘a’’

amaster



Committing

git commit -m ‘‘b’’

a

bmaster



Committing

git commit -m ‘‘c’’

a

b

cmaster



Branching

git checkout -b new-branch

a

b

c

master

new-branch



Branching

git commit -m ‘‘d’’

a

b

c

d

master

new-branch



Branching

a

b

c

d

master

new-branch HEAD



Branching

git checkout master

a

b

c

d

master

new-branch

HEAD



Branching

git checkout -b another

a

b

c

d

master

new-branch

HEADanother



Branching

git commit -m ‘‘e’’

a

b

c

d e

master

new-branch HEADanother



Merging

git merge new-branch

a

b

c

d e

master

new-branch HEADanother



Merging
git merge new-branch

a

b

c

d e

d+e

master

new-branch



Merging
git merge new-branch

a

b

c

d e

d+e

master

new-branch

HEADanother



Merging
git merge master

Nothing to do!
a

b

c

d e

d+e

master

new-branch

HEADanother



Merging
git checkout master

a

b

c

d e

d+e

master

new-branch

another

HEAD



Merging
git merge another

a

b

c

d e

d+e

master

new-branch

HEADanother



Merge conflicts

CONFLICT (content): Merge conflict in the-file.txt

Automatic merge failed; fix conflicts and then commit

the result.

In the-file.txt :
<<<<<<< HEAD

The current branch’s contents

=======

Stuff from the branch you’re merging

>>>>>>> new-branch

git add the-file.txt and git commit



Merge conflicts

CONFLICT (content): Merge conflict in the-file.txt

Automatic merge failed; fix conflicts and then commit

the result.

In the-file.txt :
<<<<<<< HEAD

The current branch’s contents

=======

Stuff from the branch you’re merging

>>>>>>> new-branch

git add the-file.txt and git commit



Merge conflicts

CONFLICT (content): Merge conflict in the-file.txt

Automatic merge failed; fix conflicts and then commit

the result.

In the-file.txt :
<<<<<<< HEAD

The current branch’s contents

=======

Stuff from the branch you’re merging

>>>>>>> new-branch

git add the-file.txt and git commit



Looking at stuff

I git log Show a log of commits

I --graph Neat ASCII graph

I -p Show what changed in each commit

I git diff Show uncommitted changes

I gitk Graphical log

I --all Show all branches

I git gui Graphical tool for committing



Looking at stuff

I git log Show a log of commits

I --graph Neat ASCII graph

I -p Show what changed in each commit

I git diff Show uncommitted changes

I gitk Graphical log

I --all Show all branches

I git gui Graphical tool for committing



Looking at stuff

I git log Show a log of commits

I --graph Neat ASCII graph

I -p Show what changed in each commit

I git diff Show uncommitted changes

I gitk Graphical log

I --all Show all branches

I git gui Graphical tool for committing



Working with remotes

I git clone REPO LOCATION makes a copy of a repository.

I git push Pushes changes from your current branch to the
remote branch it tracks.
(You may need to run
git config --global push.default simple .)

I git pull Pulls changes from the remote branch and merges
them into your current branch.

I git remote add REMOTE NAME REPO LOCATION adds a
remote to an existing repository.



Working with remotes

I git clone REPO LOCATION makes a copy of a repository.

I git push Pushes changes from your current branch to the
remote branch it tracks.
(You may need to run
git config --global push.default simple .)

I git pull Pulls changes from the remote branch and merges
them into your current branch.

I git remote add REMOTE NAME REPO LOCATION adds a
remote to an existing repository.



Working with remotes

I git clone REPO LOCATION makes a copy of a repository.

I git push Pushes changes from your current branch to the
remote branch it tracks.
(You may need to run
git config --global push.default simple .)

I git pull Pulls changes from the remote branch and merges
them into your current branch.

I git remote add REMOTE NAME REPO LOCATION adds a
remote to an existing repository.



Git Tips

I Make your commit messages descriptive!

I Don’t add generated files (like a.out ) to your repo.

I You can ignore certain files by putting their names in a
.gitignore file in your repo.

I When collaborating, work on separate branches and merge as
you go along.

I git help COMMAND will show you documentation.



Git Tips

I Make your commit messages descriptive!

I Don’t add generated files (like a.out ) to your repo.

I You can ignore certain files by putting their names in a
.gitignore file in your repo.

I When collaborating, work on separate branches and merge as
you go along.

I git help COMMAND will show you documentation.



Git Tips

I Make your commit messages descriptive!

I Don’t add generated files (like a.out ) to your repo.

I You can ignore certain files by putting their names in a
.gitignore file in your repo.

I When collaborating, work on separate branches and merge as
you go along.

I git help COMMAND will show you documentation.


