
What is shell scripting good for?

Shell scripts are the duct tape and bailing wire of computer
programming.

You can use them:

I To automate repeated tasks

I For jobs that require a lot of interaction with files

I To set up the environment for big, complicated programs

I When you need to stick a bunch of programs together into
something useful

I To add customizations to your environment

What is shell scripting good for?

Shell scripts are the duct tape and bailing wire of computer
programming.
You can use them:

I To automate repeated tasks

I For jobs that require a lot of interaction with files

I To set up the environment for big, complicated programs

I When you need to stick a bunch of programs together into
something useful

I To add customizations to your environment

A practical example runit1.sh

#!/bin/bash

fg++ *.cpp

./a.out

Special Variables

I $? Exit code of the last command run

I $0 Name of command that started this script (almost always
the script’s name)

I $1, $2, ..., $9 Comand line arguments 1-9

I $@ All command line arguments except $0

I $# The number of command line arguments in $@

And now, a brief message from our sponsors:

I Bash really likes splitting things up into words.

I for arg in $@ will NOT do what you want.

I for arg in "$@" correctly handles args with spaces.

I In general, when using the value of a variable you don’t
control, it is wise to put " s around the variable.

Special Variables

I $? Exit code of the last command run

I $0 Name of command that started this script (almost always
the script’s name)

I $1, $2, ..., $9 Comand line arguments 1-9

I $@ All command line arguments except $0

I $# The number of command line arguments in $@

And now, a brief message from our sponsors:

I Bash really likes splitting things up into words.

I for arg in $@ will NOT do what you want.

I for arg in "$@" correctly handles args with spaces.

I In general, when using the value of a variable you don’t
control, it is wise to put " s around the variable.

Special Variables

I $? Exit code of the last command run

I $0 Name of command that started this script (almost always
the script’s name)

I $1, $2, ..., $9 Comand line arguments 1-9

I $@ All command line arguments except $0

I $# The number of command line arguments in $@

And now, a brief message from our sponsors:

I Bash really likes splitting things up into words.

I for arg in $@ will NOT do what you want.

I for arg in "$@" correctly handles args with spaces.

I In general, when using the value of a variable you don’t
control, it is wise to put " s around the variable.

Special Variables

I $? Exit code of the last command run

I $0 Name of command that started this script (almost always
the script’s name)

I $1, $2, ..., $9 Comand line arguments 1-9

I $@ All command line arguments except $0

I $# The number of command line arguments in $@

And now, a brief message from our sponsors:

I Bash really likes splitting things up into words.

I for arg in $@ will NOT do what you want.

I for arg in "$@" correctly handles args with spaces.

I In general, when using the value of a variable you don’t
control, it is wise to put " s around the variable.

A Spiffier Example runit2.sh

#!/bin/bash

fg++ *.cpp -o "$1"

./"$1"

Conditional Statements if.sh

#!/bin/bash

Emit the appropriate greeting for various people

if [[$1 = "Jeff"]]; then

echo "Hi, Jeff"

elif [[$1 == "Maggie"]]; then

echo "Hello, Maggie"

elif [[$1 == *.txt]]; then

echo "You’re a text file, $1"

elif ["$1" = "Stallman"]; then

echo "FREEDOM!"

else

echo "Who in blazes are you?"

fi

Conditional Operators

I [] is shorthand for the test command.

I [[]] is a bash keyword.

I [] works on most shells, but [[]] is less confusing.

I (()) is another bash keyword. It does arithmetic.

Conditional Operators

I [] is shorthand for the test command.

I [[]] is a bash keyword.

I [] works on most shells, but [[]] is less confusing.

I (()) is another bash keyword. It does arithmetic.

String Comparison Operators for [[]]

I = String equality OR pattern matching if the RHS is a
pattern.

I != String ineqaulity.

I < The LHS sorts before the RHS.

I > The LHS sorts after the RHS.

I -z The string is empty (length is zero).

I -n The string is not empty (e.g. [[-n "$var"]]).

String Comparison Operators for [[]]

I = String equality OR pattern matching if the RHS is a
pattern.

I != String ineqaulity.

I < The LHS sorts before the RHS.

I > The LHS sorts after the RHS.

I -z The string is empty (length is zero).

I -n The string is not empty (e.g. [[-n "$var"]]).

String Comparison Operators for [[]]

I = String equality OR pattern matching if the RHS is a
pattern.

I != String ineqaulity.

I < The LHS sorts before the RHS.

I > The LHS sorts after the RHS.

I -z The string is empty (length is zero).

I -n The string is not empty (e.g. [[-n "$var"]]).

Numeric Comparison Operators for [[]]

I -eq Numeric equality (e.g. [[5 -eq 5]]).

I -ne Numeric inequality.

I -lt Less than

I -gt Greater than

I -le Less than or equal to

I -ge Greater than or equal to

Numeric Comparison Operators for [[]]

I -eq Numeric equality (e.g. [[5 -eq 5]]).

I -ne Numeric inequality.

I -lt Less than

I -gt Greater than

I -le Less than or equal to

I -ge Greater than or equal to

File Operators for [[]]

I -e True if the file exists (e.g. [[-e story.txt]])

I -f True if the file is a regular file

I -d True if the file is a directory

There are a lot more file operators that deal with even fancier stuff.

General Operators for [[]]

I && Logical AND

I || Logical OR

I ! Logical NOT

I You can use parentheses to group statements too.

General Operators for [[]]

I && Logical AND

I || Logical OR

I ! Logical NOT

I You can use parentheses to group statements too.

Shell Arithmetic with (())

I This mostly works just like C++ arithmetic does.

I ** does exponentiation

I You can do ternaries! ((3 < 5 ? 3 : 5))

I You don’t need $ on the front of normal variables.

I Shell Arithmetic Manual

http://www.gnu.org/software/bash/manual/bash.html#Shell-Arithmetic

Spiffy++ Example runit3.sh

#!/bin/bash

if (($# > 0)); then

g++ *.cpp -o "$1"

exe="$1"

else

g++ *.cpp

exe=a.out

fi

if [[$? -eq 0]]; then

./"$exe"

fi

(Could you spiff it up even more with file checks?)

Case statements
#!/bin/bash

case $1 in

a)

echo "a, literally"

;;

b*)

echo "Something that starts with b"

;;

*c)

echo "Something that ends with c"

;;

"*d")

echo "*d, literally"

;;

*)

echo "Anything"

;;

esac

For Looping for.sh

#!/bin/bash

echo C-style:

for ((i=1; i < 9; i++)); do

echo $i;

done

echo BASH-style:

for file in *.sh; do

echo $file

done

While Looping while.sh

#!/bin/bash

input=""

while [[$input != "4"]]; do

echo "Please enter the random number: "

read input

done

Reading Files quine.sh

#!/bin/bash

IFS= # Inter-field separator.

Unset to prevent word splitting

while read f; do

echo "$f"

done < "$0"

What is a quine?

https://en.wikipedia.org/wiki/Quine_(computing)

Functions function.sh

#!/bin/bash

parrot() {

while (($# > 0)); do

echo "$1"

shift

done

}

parrot These are "several arguments"

Miscellany

I Escaping characters: use \ on \, `, $, ", ’, #

I pushd and popd create a stack of directories

I dirs lists the stack

I Use these instead of cd

I set -u gives an error if you try to use an unset variable.

I set -x prints out commands as they are run.

I help COMMAND gives you help with builtins.

Miscellany

I Escaping characters: use \ on \, `, $, ", ’, #

I pushd and popd create a stack of directories

I dirs lists the stack

I Use these instead of cd

I set -u gives an error if you try to use an unset variable.

I set -x prints out commands as they are run.

I help COMMAND gives you help with builtins.

Miscellany

I Escaping characters: use \ on \, `, $, ", ’, #

I pushd and popd create a stack of directories

I dirs lists the stack

I Use these instead of cd

I set -u gives an error if you try to use an unset variable.

I set -x prints out commands as they are run.

I help COMMAND gives you help with builtins.

Miscellany

I Escaping characters: use \ on \, `, $, ", ’, #

I pushd and popd create a stack of directories

I dirs lists the stack

I Use these instead of cd

I set -u gives an error if you try to use an unset variable.

I set -x prints out commands as they are run.

I help COMMAND gives you help with builtins.

