
What are Regular Expressions?

Regex is a language for describing patterns in strings.

Use regex for:
I Finding needles in haystacks.
I Changing one string to another.
I Pulling data out of strings.

What are Regular Expressions?

Regex is a language for describing patterns in strings.
Use regex for:

I Finding needles in haystacks.
I Changing one string to another.
I Pulling data out of strings.

Looking for stuff with grep

I grep : Global Regular Expression Print

I grep 'REGEX' FILES : Search FILES for REGEX and print
matches.

I If you don’t specify FILES , grep will read STDIN (so you
can pipe stuff into it).

I -C LINES gives LINES lines of context around the match.
I -v prints every line that doesn’t match (invert).
I -i Ignore case when matching.
I -P Use Perl-style regular expressions.
I -o Only print the part of the line the regex matches.

Looking for stuff with grep

I grep : Global Regular Expression Print

I grep 'REGEX' FILES : Search FILES for REGEX and print
matches.

I If you don’t specify FILES , grep will read STDIN (so you
can pipe stuff into it).

I -C LINES gives LINES lines of context around the match.
I -v prints every line that doesn’t match (invert).
I -i Ignore case when matching.
I -P Use Perl-style regular expressions.
I -o Only print the part of the line the regex matches.

Looking for stuff with grep

I grep : Global Regular Expression Print

I grep 'REGEX' FILES : Search FILES for REGEX and print
matches.

I If you don’t specify FILES , grep will read STDIN (so you
can pipe stuff into it).

I -C LINES gives LINES lines of context around the match.
I -v prints every line that doesn’t match (invert).
I -i Ignore case when matching.
I -P Use Perl-style regular expressions.
I -o Only print the part of the line the regex matches.

Basic Patterns

I . Matches one of any character.
I \w Matches a word character (letters, numbers, and _).

I \W Matches everything \w doesn’t.

I \d Matches a digit.

I \D Matches anything that isn’t a digit.

I \s Matches whitespace (space, tab, newline, carriage return,
etc.).

I \S Matches non-whitespace (everything \s doesn’t match).

I \ is also the escape character.

Variable-length Patterns

I {n} matches n of the previous character.

I {n,m} matches between n and m of the previous character
(inclusive).

I {n,} matches at least n of the previous character.

I * matches 0 or more of the previous character ({0,}).

I + matches 1 or more of the previous character ({1,}).

I ? matches 0 or 1 of the previous character ({0,1}).

Variable-length Patterns

I {n} matches n of the previous character.

I {n,m} matches between n and m of the previous character
(inclusive).

I {n,} matches at least n of the previous character.

I * matches 0 or more of the previous character ({0,}).

I + matches 1 or more of the previous character ({1,}).

I ? matches 0 or 1 of the previous character ({0,1}).

DIY character classes

I [abc\d] matches a character that is either a, b, c, or a digit.

I [a-z] matches characters between a and z.

I ˆ negates a character class: [ˆabc] matches everthing
except a, b, and c.

Anchors

I ˆ forces the pattern to start matching at the beginning of the
line.

I $ forces the pattern to finish matching at the end of the line.

I \b forces the next character to be a word boundary.

I \B forces the next character to not be a word boundary.

Groups

I (ab|c) matches either ‘ab’ or ‘c’.

I You can use length modifiers on groups, too: (abc)+
matches one or more ‘abc’

I The real power of grouping is backreferences. You can refer to
the thing matched by the 1st group, etc.

I For example, (ab|cd)\1 matches ‘abab’ or ‘cdcd’ but not
‘abcd’ or ‘cdab’.

Greedy vs. Polite matching

I Regular expressions are greedy by default: they match as much
as they possibly can.

I Usually this is what you want, but sometimes it isn’t.
I You can make a variable-length match non-greedy by putting a

? after it.
I For example: .+\. vs. .+?\. .

Sed: Editing with regex

I sed is a stream editor-use it for editing files or STDIN.
I It uses regular expressions to perform edits to text.
I -r enables extended regular expressions.
I -n makes sed only print the lines it matches.

The Print Command

I sed -n '/regex/ p' works pretty much exactly like grep .
I Use this to make sure your regexes are matching what you

want them to.
I (You can also use p in conjunction with s , which we’ll talk

about immediately.)

The Substitute Command

I s/PATTERN/REPLACEMENT/ replaces the thing matched by
PATTERN with REPLACEMENT.

I Patterns can be any regular expression that we’ve talked about
so far.

I Replacements can be plain text and/or backreferences!

I s/ / /g makes the substitution global (every match on each
line).

I s/ / /i makes the match case-insensitive.

The Substitute Command

I s/PATTERN/REPLACEMENT/ replaces the thing matched by
PATTERN with REPLACEMENT.

I Patterns can be any regular expression that we’ve talked about
so far.

I Replacements can be plain text and/or backreferences!
I s/ / /g makes the substitution global (every match on each

line).
I s/ / /i makes the match case-insensitive.

