
Code Checking Tools

Today we will talk about tools that will help you find bugs in your
code.

I Valgrind’s Memcheck Tool
I Clang: Not just a compiler

Valgrind is all-in-one, but Clang is (much) faster.



Stack and Heap

I The stack (on x86) starts at a high address and grows down
I The heap (on x86) starts at the bottom and grows up
I Destructors on stack-allocated class instances are called when

the function returns
I Destructors on heap-allocated class instances are called when

delete is called on the pointer



Stack and Heap

I The stack (on x86) starts at a high address and grows down
I The heap (on x86) starts at the bottom and grows up
I Destructors on stack-allocated class instances are called when

the function returns
I Destructors on heap-allocated class instances are called when

delete is called on the pointer



Uninitialized Values (valgrind and memory-sanitizer)

I Reading a value that hasn’t been initialized from the stack or
the heap.

I Especially dangerous when program flow depends on that
value.

I valgrind –track-origins=yes Slower, but keeps track of
where uninitialized values were allocated.

I source symbolizer.sh

I clang++ –fsanitize=memory
–fsanitize-memory-track-origins



Uninitialized Values (valgrind and memory-sanitizer)

I Reading a value that hasn’t been initialized from the stack or
the heap.

I Especially dangerous when program flow depends on that
value.

I valgrind –track-origins=yes Slower, but keeps track of
where uninitialized values were allocated.

I source symbolizer.sh

I clang++ –fsanitize=memory
–fsanitize-memory-track-origins



Invalid Reads and Writes (valgrind and address-sanitizer)

I Reading or writing values from unallocated memory.
I Sometimes may result in a segfault, but not always.

I Valgrind isn’t perfect: you can read and write to things on the
stack without complaint.

I clang++ –fsanitize=address



Invalid Reads and Writes (valgrind and address-sanitizer)

I Reading or writing values from unallocated memory.
I Sometimes may result in a segfault, but not always.
I Valgrind isn’t perfect: you can read and write to things on the

stack without complaint.
I clang++ –fsanitize=address



Invalid and Mismatched deletes (valgrind and
address-sanitizer)

I Mismatched delete: using delete with new[] or vice versa.
I Double delete: deleting the same memory twice



Memory Leaks (valgrind)

I Valgrind runs leak checks after the program terminates.
I Directly lost: No pointer to that block anymore.
I Indirectly lost: A pointer to that block exists, but it’s in a

directly lost block.
I Still reachable: Still have a pointer to that block.
I Possibly lost: No pointer to the beginning of the block, but a

pointer to somewhere inside the block.
I valgrind –leak-check=full
I Valgrind Memcheck Manual

http://valgrind.org/docs/manual/mc-manual.html

