Missouri S&T Computer Science Department
C++ Coding Standard

September 12, 2016

Contents
1 Introduction
1.1 Why do we need a coding standard?
1.2 Acknowledgements L.
2 File Names
2.1 Fileextensions L.
2.2 Examples of valid filenames
3 Project Files
3.1 Headerfiles
3.2 Implementation files 0.
4 Comments
4.1 Files
4.2 Classes e
4.3 Functions e
4.4 Class member variables
5 Naming conventions

Formatting Statements

6.1 Indenting
6.2 Simple statements
6.3 Blocks
6.4 return statements
6.5 if , if-else, and if-else-if-else statements.
6.6 for statements
6.7 while statements
6.8 do-while statements
6.9 switch statements
6.10 Class declarations

w [\ [\

w w

U B

(]

© 00 00 00 I O OOy ut W

1 Introduction

1.1 Why do we need a coding standard?

A coding standard is desirable for a couple of reasons:

e Most software companies enforce some kind of coding standard, so this is
good experience preparing for a “real-world” environment.

e Using a coding standard makes code more readable, making it easier for
the graders to assist students with coding problems and allowing them to
evaluate the code and return grades more quickly.

e All code will be graded against the same standard, allowing for more
uniform grading.

1.2 Acknowledgements

Some elements of this document are inspired by Code Conventions for the Java™
Programming Language, revised April 20, 1999, available at: http://java.

sun.com/docs/codeconv/html /CodeConvTOC.doc.html.

2 File Names

The purpose of the file should be easy to determine from its name. You may
call your main implementation file hwl.cpp (Homework 1) or main.cpp , but
other files (class header or implementation files) should be given more descriptive
names. For instance, in the case of a class header, use the name of the class.

2.1 File extensions

Header files: .h
Implementation files: .cpp
Template implementation files: .hpp

2.2 Examples of valid filenames

Filename
main.cpp
hwl.cpp
vector.cpp
vector.hpp
sl list.h

Contents

int main() function for the assignment

int main() function for assignment 1

Member function implementations for a non-templated vector class
Member function implementations for a templated vector class
Header file for a singly-linked list class

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

3 Project Files

The files in your program will either be header or implementation files. Header
files will contain all function prototypes and struct or class declarations. Imple-
mentation files contain the implementations of all functions (with the exception
of set and get functions).

Filenames for headers and implementations must match except for the ex-
tension. If your function is prototyped in a file called foobar.h , it must be
implemented in foobar.cpp .

At most, every line in your file should be no more than 80 characters wide
(including indentations). This is a standard display width for most terminals.

3.1 Header files

Header files must always contain lines similar to the following before any other
lines of code:

#ifndef FILENAME EXTENSION
#define FILENAME EXTENSION

Adding these lines ensures that if a header file is #include d by more than
one implementation file, the code it contains is only included and compiled once.

By standard C++4 programming conventions, the #define value is “FILE-
NAME underscore EXTENSION”. For example, in the vector.h above, the
appropriate lines are:

#ifndef VECTORH
#define VECTORH

The last line of every header file should be:

#endif

Alternatively, you may place the following at the top of a header file:

#pragma once

This eliminates the need for the #ifndef / #define as well as the #endif
at the end of the header file. While #pragma once is not standard, it is
supported by every commonly-used compiler.

3.2 Implementation files

.cpp files should NEVER be #include d. .hpp files should be #include d
at the end of the header file that defines the associated template class immedi-
ately before the #endif .

4 Comments

4.1 Files

The very top of every file must have a comment block like the following:

/*

Author: Your name and your class and section number
File: filename.cpp Date: tomorrow

Class: CS 9001 section A

Instructor: Homer Simpson

A brief description of the file’s contents

/

*
*
*
*
*
*

4.2 Classes

Before each class declaration (i.e. in the header file for each class), the following
comment block must appear:

/ *
* Class: Class_name
* A brief description of what the class does

*/

4.3 Functions

Both regular and member functions must be documented at the point of dec-
laration(i.e. in a header file). When defining a class, the comment blocks can
appear either between the class comment block and the class definition or inside
the class definition immediately above the member function they describe.

/*

* Function: function_name

* A description of the function that includes any

* information needed to use it

* Pre: The function’s preconditions, in terms of

* program variables and system state

* Post: The function’s postconditions

* Param paramnamel: A description of the first parameter
* Param paramname2: A description of the second parameter
* Return: A description of the return value

*/

4.4 Class member variables

Each class member variable should have a short comment describing its purpose:

class list

{

private:
int m_size; // Stores the number of nodes in the list

}s

5 Naming conventions

The purpose of any variable, function, class, or struct should be obvious from its
name. You are not required to use Hungarian notation (intSize , strName),
but you are required to use descriptive names.

You may choose to use underscores (line count , also known as ‘snake
case’) or mixed case (lineCount , also known as ‘camel case’) names.

You may only use single-letter variable names under the following conditions:

e The purpose is obvious from the name, e.g. x and y for coordinates, or
w and h for width and height

e The variable is being used as a counter in a for or while loop, e.g.
for(int i = 0; i < 10; i++)

Global variables should not appear in your programs. Global constants
ought to be named with all uppercase letters and underscores; for instance,
float PI=3.14159.

Names of variables and functions should begin with lower-case letters. Class
names begin with upper-case letters.

Template types should be named descriptively. T is acceptable as it is a
common convention. generic is also acceptable since it is descriptive.

6 Formatting Statements

6.1 Indenting

Every line inside a code block should be indented one level for easier readability.
Do not use tabs to indent; use two spaces instead. Do not use either more
or less than two spaces per indent level. Most editors can be configured to
automaically indent your code as you type.
If you have to indent your code more than four levels deep, you should stop
and think about what you're doing. Down that path lies madness.

6.2 Simple statements

Each line should contain no more than one statement. For instance, this is not
acceptable:

argv++; argec——; // <-- NO!

Don’t use the comma operator to group unrelated statements.

cerr << "error”, exit(1); // THIS IS ALSO BAD

6.3 Blocks

Blocks consist of a list of statements enclosed in curly braces ({}).

e The opening and closing braces should appear on their own lines at the
indent level of code outside the block.

e The statements inside the block should be indented one more level.

e Braces should be included around all blocks, including blocks containing
only one statement. This prevents bugs caused by forgetting to add braces
around a block when adding additional statements.

The following sections contain many examples of this formatting.

6.4 return statements

Every function, including void functions, must end with a return statement.
Return statements should use parentheses only when needed to make the
return value clearer.

return;
return myDisk. size ();
return (size ? size : defaultSize);

6.5 if, if-else, and if-else-if-else statements

These statements should have the following forms:

if (condition)

{
}

statements ;

if (condition)
{
}
else

{
}

statements ;

statements ;

if (condition)

{
}

else if(condition)

{
}
else

{
}

statements ;

statements ;

statements ;

Braces must be included even if there is only one statement in the block. Do
not do this:

if (condition)
statement ;

6.6 for statements

A for statement should have the following form:

for (initialization; condition; update)

{
}

statements ;

If a for loop is empty; that is, all the work in the for loop is done by the
initialization, condition, and update clauses, you may format it as follows:

for (initialization; condition; update);

When using the comma operator in the initialization or update clause of a for
statement, avoid the complexity of using more than three variables. If needed,
use separate statements before the for loop (for the initialization clause) or at
the end of the loop (for the update clause).

6.7 while statements

A while statement should have the following form:

while (condition)

{
}

statements ;

An empty while statement may be formatted as follows:

while (condition);

6.8 do-while statements

do-while statements should have the following form:

do

{
statements ;
} while(condition);

This is the one exception to the rule that braces appear on their own lines.

6.9 switch statements

A switch statement should have the following form:

switch(variable)
{
case ABC:
statements ;
/* falls through */
case DEF:
statements ;
break ;
case XYZ:
statements ;
break;
default :
statements ;

break ;

Every case that falls through (doesn’t break) must include a comment
where the break statement would usually appear stating as much. This makes
it easy to spot bugs where the break statement was accidentally omitted.

Every switch should contain a default case. In the example above, the
break statement is redundant, but it prevents a fall-through error if more cases
are added at a later time.

6.10 Class declarations

Classes must be declared in the following format:

class ClassName

{

public:
// public member function declarations

private:
// private member variables and functions

}s

Example

Listing 1: temperature.h

#ifndef TEMPERATUREH
#define TEMPERATUREH

/ *
* Author: Nathan Jarus, CS 1570 A
* File: temperature.h Date: 2016-08-21
* This file contains a class for converting
* temperature units.
*/
/ *
* Class: Temperature
* This class stores the value of one temperature.
* It can convert temperatures between degrees Fahrenheit,
* Celsius, and Kelvin.
*/
/ *
* Function: setCelsius
* Sets the temperature using degrees Celsius
* Pre: the parameter must be in degrees Celsius
* Post: the parameter is converted to degrees Kelvin
* and stored in m_temperature
* Param temp: the temperature to store, in degrees

* X X X X X X X * * X X X X X X X * * X X X X X X X *

* X X X X X X X *

/ *
*
*

Celsius

Function: setFahrenheit

Sets the temperature using degrees Fahrenheit

Pre: the parameter must be in degrees Fahrenheit

Post: the parameter is converted to degrees Kelvin
and stored in m_temperature

Param temp: the temperature to store, in degrees
Fahrenheit

Function: setKelvin

Sets the temperature using degrees Kelvin

Pre: the parameter must be in degrees Kelvin

Post: the parameter is converted to degrees Kelvin
and stored in m_temperature

Param temp: the temperature to store, in degrees
Kelvin

Function: getCelsius

Retrieves the temperature in degrees Celsius

Pre: none

Post: The value of m_temperature is converted to
degrees Celsius

Return: The value of m_temperature in degrees
Celsius

Function: getFahrenheit

Retrieves the temperature in degrees Fahrenheit

Pre: none

Post: The value of m_temperature is converted to
degrees Fahrenheit

Return: The value of m_temperature in degrees
Fahrenheit

Function: getKelvin
Retrieves the temperature in degrees Kelvin

10

* Pre: none

* Post: The value of m_temperature is converted to
* degrees Kelvin

* Return: The value of m_temperature in degrees

* Kelvin

*/

class Temperature
{
public:
void setCelsius (double temp);
void setFahrenheit (double temp);
void setKelvin (double temp);

double getCelsius ();
double getFahrenheit ();
double getKelvin ();

private:
double m_temperature; // Stores a temperature in
// degrees Kelvin

#endif
Listing 2: main.cpp
/ *
* Author: Nathan Jarus, CS 1570 A
* File: main.cpp Date: 2016-08-21

* Demonstrates the use of the Temperature class

*/

#include ”"temperature.h”
using namespace std;

int main ()

{

Temperature t;

t.setCelsius (52.3);
cout << t.getKelvin () << endl;

return 0;

11

	Introduction
	Why do we need a coding standard?
	Acknowledgements

	File Names
	File extensions
	Examples of valid filenames

	Project Files
	Header files
	Implementation files

	Comments
	Files
	Classes
	Functions
	Class member variables

	Naming conventions
	Formatting Statements
	Indenting
	Simple statements
	Blocks
	push0 g 0 Gpopreturngray!30push0 g 0 Gpoptowidthheightdepth statements
	push0 g 0 Gpopifgray!30push0 g 0 Gpoptowidthheightdepth, push0 g 0 Gpopif-elsegray!30push0 g 0 Gpoptowidthheightdepth, and push0 g 0 Gpopif-else-if-elsegray!30push0 g 0 Gpoptowidthheightdepth statements
	push0 g 0 Gpopforgray!30push0 g 0 Gpoptowidthheightdepth statements
	push0 g 0 Gpopwhilegray!30push0 g 0 Gpoptowidthheightdepth statements
	push0 g 0 Gpopdo-whilegray!30push0 g 0 Gpoptowidthheightdepth statements
	push0 g 0 Gpopswitchgray!30push0 g 0 Gpoptowidthheightdepth statements
	Class declarations

