
Models, Metamodels, and Model Transformation
for Cyber-Physical Systems

Nathan Jarus, Sahra Sedigh Sarvestani, and Ali Hurson

Department of Electrical and Computer Engineering
Missouri University of Science and Technology, Rolla, MO 65409, USA

November 9, 2016

1 / 30

Introduction

I Cyber-physical systems (CPSs) are characterized by tight
integration between a physical network and a cyber network
that monitors and controls the physical network.

I Can be used to build sustainable infrastructure:
I Make existing physical networks more dependable.
I Reduce the physical resources needed to build new

infrastructure.

I Examples:
I Smart grids
I Intelligent water distribution networks
I Intelligent transportation systems

2 / 30

Motivation

I Designing cyber-physical systems requires constructing
multiple models of each design:

I Performance models
I Dependability models (reliability, resilience, survivability, etc.)

I Modeling challenges:
I How do you avoid the need to reconstruct each model every

time the system design changes?
I How do you make sure each model is operating from the same

assumptions?

3 / 30

Related Work

Related work in metamodeling falls into two categories:

I Model composition

I Model transformation

4 / 30

Model Composition

I A hierarchical approach is most commonly taken.
I Build subsystem-level models and link them together into

system-level models.
I Subsystem models may be of different types.

I Commonly mischaracterized as model transformation, but
does not start with one model and derive a different one.

I Projects: Ptolemy, Möbius

5 / 30

Model Transformation with Metamodeling

I Model transformation converts a model of one type, e.g., a
survivability model, to a model of another type, e.g., a
reliability model.

I Can facilitate and prevent mistakes when modeling complex
systems.

I Typically carried out in three approaches:
I Graph transformation
I Class inheritance transformation
I Coalgebraic transformation

6 / 30

Graph Transformation

I Formulate models as graphs and model transformation as
rewriting of the graphs.

I Each model type has a meta-model that describes how its
graph can be transformed to graphs of other model types.

I Projects: AToM3, CHESS, CONCERTO
I CHESS and CONCERTO are more focused on modeling

multi-core computer systems.

7 / 30

Class Inheritance Transformation

I Each model type corresponds to a class in a class hierarchy.

I Models are instances of their type’s class.

I Transformation occurs by using inheritance principles to
convert a model from one type to another.

I Projects: OsMoSys, SIMTHESys

8 / 30

Coalgebraic Transformation

I Each modeling formalism is described as a coalgebra – a
mathematical system useful for describing transitions among
states.

I The coalgebras are placed in a lattice to provide a structure
for determining which transformations can be performed.

I Can relate different types of models of the same system, such
as a model of system functionality and a model of system
power consumption.

I Projects: Rosetta

9 / 30

Related Model Composition and Transformation Tools

Project Target Field Applicable To Approach

Ptolemy Cyber-physical systems Anything with a computation model Composition
Möbius Complex network systems Performance and dependability Composition

AToM3 General modeling Anything that can be metamodeled Graph rewriting
CONCERTO Model-driven engineering Functional models Graph rewriting
OsMoSys General modeling Anything that can be metamodeled Class Inheritance
SIMTHESys General modeling Anything that can be metamodeled Class Inheritance
Rosetta General modeling Discrete event systems Coalgebras

10 / 30

Open Problems

Our work is necessary because:
I Some approaches, such as graph or class inheritance

transformation, are difficult to apply to certain model types.
I In particular, relating discrete- and continuous-time models is a

challenge.

I Model transformation techniques must exhibit two attributes:
I Correctness: the generated model describes the same system

as the source model
I Specificity: the generated model contains as much information

as possible from the source model

Of these attributes, correctness is only addressed by Rosetta,
and no approaches address specificity.

11 / 30

Open Problems

Our work is necessary because:
I Some approaches, such as graph or class inheritance

transformation, are difficult to apply to certain model types.
I In particular, relating discrete- and continuous-time models is a

challenge.

I Model transformation techniques must exhibit two attributes:
I Correctness: the generated model describes the same system

as the source model
I Specificity: the generated model contains as much information

as possible from the source model

Of these attributes, correctness is only addressed by Rosetta,
and no approaches address specificity.

11 / 30

Transformation

Model1 Model2
Transformation

I How do we define transformations between very different
models?

I For example, transforming a model of a nonfunctional attribute
into a performance model

I The task is complicated by a potential lack of transitivity:
I Transforming Model1 →Model2, then Model2 →Model3

may not be equivalent to directly transforming
Model1 →Model3.

12 / 30

Transformation

Model1 Model2
Transformation

I How do we define transformations between very different
models?

I For example, transforming a model of a nonfunctional attribute
into a performance model

I The task is complicated by a potential lack of transitivity:
I Transforming Model1 →Model2, then Model2 →Model3

may not be equivalent to directly transforming
Model1 →Model3.

12 / 30

Original Research Contribution
Creation of a model transformation method based on
abstract interpretation.

I We view models as syntactic representations of a system.

I We abstract properties from a model.

I We concretize semantically equivalent models from a set of
properties.

I We show that this technique is both correct and specific.

13 / 30

Original Research Contribution
Creation of a model transformation method based on
abstract interpretation.

I We view models as syntactic representations of a system.

I We abstract properties from a model.

I We concretize semantically equivalent models from a set of
properties.

I We show that this technique is both correct and specific.

13 / 30

Abstraction

Properties

Model1 Model2

Abstraction Concretization

I It is always feasible to abstract system properties from a given
model.

I However, it may be infeasible to construct a model of a
different type from these properties.

14 / 30

Abstraction

Properties

Model1 Model2

Abstraction Concretization

I It is always feasible to abstract system properties from a given
model.

I However, it may be infeasible to construct a model of a
different type from these properties.

14 / 30

Abstraction

Properties

P(Model1) P(Model2)

Model1 Model2

Lifting lift(x) = {x}

Abstraction Concretization

Selection

To generate a model of type 2 from a given model of type 1:
I We first extract the properties of the type 1 model and

concretize these properties to generate a set of type 2 models.
I A single type 2 model is selected from the resulting set.

15 / 30

Abstraction

Properties

P(Model1) P(Model2)

Model1 Model2

Lifting lift(x) = {x}

Abstraction Concretization

Selection

To generate a model of type 2 from a given model of type 1:
I We first extract the properties of the type 1 model and

concretize these properties to generate a set of type 2 models.
I A single type 2 model is selected from the resulting set.

15 / 30

Correctness and Specificity

Correctness:

I Need to show that the transformation process does not
produce results that do not follow from the input model.

I If the transformation is from one model type to the same
model type, abstracting properties from a model and then
concretizing those properties will produce a set of models
containing the input model.

Specificity:

I Smaller sets of models are more specific.

I Larger sets of properties are more specific.

I The selection process requires consideration of information
not present in the initial model.

16 / 30

Order Relationships

I Ordering sets of models and properties based on their
specificity is essential to formalizing model transformation.

I We write M1 vM M2 if the set of models M1 is more specific,
i.e., smaller, than M2.

I Likewise, P1 vP P2 implies that the properties in P1 include
detail beyond what is present in P2.

I These relationships form a partial order – we do not require
each pair of sets of models or properties to be comparable.

I For instance, the sets of models {m1} and {m2} – each of
which has a single member – are equally specific, but not
equal to each other.

17 / 30

Order Relationships

I Ordering sets of models and properties based on their
specificity is essential to formalizing model transformation.

I We write M1 vM M2 if the set of models M1 is more specific,
i.e., smaller, than M2.

I Likewise, P1 vP P2 implies that the properties in P1 include
detail beyond what is present in P2.

I These relationships form a partial order – we do not require
each pair of sets of models or properties to be comparable.

I For instance, the sets of models {m1} and {m2} – each of
which has a single member – are equally specific, but not
equal to each other.

17 / 30

Galois Connections

Correctness and specificity can be mathematically formalized using
Galois connections.

A Galois connection (P(M), α, γ,P) between two sets with partial
orders (P(M),vM) and (P,vP), is a pair of order-preserving
functions α : M 7→ P and γ : P 7→ M such that

m vM (γ ◦ α)(m),∀m ∈ P(M)

(α ◦ γ)(p) vP p,∀p ∈ P

I P(M) is referred to as the concrete domain and P as the
abstract domain.

I α is called the abstraction operator and γ the concretization
operator.

18 / 30

Properties of Galois Connections

I The abstraction operator can be inferred from the
concretization operator, or vice versa:

I α uniquely determines γ by γ(p) =
⊔
{m : α(m) vP p}

I γ uniquely determines α by α(m) = ⊔{p : m vM γ(p)}
I Repeated abstraction and concretization cannot introduce

additional models or properties:
I α ◦ γ ◦ α = α
I γ ◦ α ◦ γ = α

I Therefore, formalizing model transformation with Galois
connections clearly defines the relationship between models
and properties.

19 / 30

Systems, Models, and Properties

Let’s consider a system S. We write

I S ` m if the model m ∈ M describes S.

I S ` m1 m2 if m1 can be transformed to m2 (while still
describing S).

I We don’t require to be easily calculable or even a function
in the mathematical sense.

I S ` p if the set of properties p ∈ P hold for S.

I S ` p1 B p2 if the properties p1 can be transformed into
properties p2 while still describing S.

I We require B to be deterministic.

Idea: properties are easier to reason about than models.

20 / 30

Systems, Models, and Properties

Let’s consider a system S. We write

I S ` m if the model m ∈ M describes S.

I S ` m1 m2 if m1 can be transformed to m2 (while still
describing S).

I We don’t require to be easily calculable or even a function
in the mathematical sense.

I S ` p if the set of properties p ∈ P hold for S.

I S ` p1 B p2 if the properties p1 can be transformed into
properties p2 while still describing S.

I We require B to be deterministic.

Idea: properties are easier to reason about than models.

20 / 30

Abstract Interpretation

I We define a representation function β : M 7→ P that maps
m ∈ M to the most specific p ∈ P describing it.

I β is also preserved by B: if S ` m1 m2, S ` p1 B p2, and
β(m1) v p1, then β(m2) v p2.

S ` m1 m2

=⇒

S ` p1 B p2

β

v

β
v

I We can show β is correct by constructing a Galois Connection
between P(M) and P.

I Intuitively, concretizing properties gives you the set of models
for which those properties hold.

I Abstracting a set of models gives the most specific set of
properties that hold for all models in that set.

21 / 30

Abstract Interpretation

I We define a representation function β : M 7→ P that maps
m ∈ M to the most specific p ∈ P describing it.

I β is also preserved by B: if S ` m1 m2, S ` p1 B p2, and
β(m1) v p1, then β(m2) v p2.

S ` m1 m2

=⇒

S ` p1 B p2

β

v

β
v

I We can show β is correct by constructing a Galois Connection
between P(M) and P.

I Intuitively, concretizing properties gives you the set of models
for which those properties hold.

I Abstracting a set of models gives the most specific set of
properties that hold for all models in that set. 21 / 30

Formal Model Transformation

Properties

P(Model1) P(Model2)

Model1 Model2

Lifting Selection

γ1α1 γ2α2

Lifting Selection

β1 β2

I We can transform between model types given that each model
has a Galois connection with Properties.

I Following a transformation, we can follow a model-aware
selection process to introduce new modeling assumptions.

22 / 30

Example: Topological Model

Generator

c1

Load

c2
c3

c4

I This model, MT , shows the topology of a power grid.

I We seek to derive other models from this topological model.

23 / 30

Example: Properties of the Topological Model

For example, we could extract properties of the following types:

components ⊆ component

attributes ⊆ component× {generator, load, line}
links ⊆ component× component× component

neighbors ⊆ component× P(component)

For our model MT , the corresponding properties PT would be:

components(PT) = {c1, c2, c3, c4}
attributes(PT) = {(c1, generator), (c2, load),

(c3, line), (c4, line)}
links(PT) = {(c1, c3, c2), (c1, c4, c2)}

neighbors(PT) = {(c1, {c3, c4}), (c2, {c3, c4})}

24 / 30

Example: Direct Construction of a Specific MIS Reliability
Model

I The Markov Imbedded Structure technique can be used to
derive system reliability from individual component reliability.

I Each state in the Markov chain (S0 − S3) corresponds to a
combination of functional and failed system components.

I In this model, we only consider the failure of lines.
I State transitions resulting from the behavior of c3 are captured

by Pc3 , where pL = 1− qL is the reliability of the line.

Components

States c3 c4

S0 1 1

S1 1 0

S2 0 1

S3 0 0

Pc3 =


pL 0 qL 0
0 pL 0 qL

0 0 1 0
0 0 0 1



Pc4 =


pL qL 0 0
0 1 0 0
0 0 pL qL

0 0 0 1


25 / 30

Example: Direct Construction of a Specific MIS Reliability
Model

I We identify the probability of the system initially being in
each state with the vector Π0.

I The vector u identifies which states are considered functional;
here, both lines must fail for the system to fail.

I System reliability is then given by R.
I We assume the behavior of each component is independent.

Π0 = [1, 0, 0, 0]

u = [1, 1, 1, 0]

R = ΠT
0 ∗ Pc3 ∗ Pc4 ∗ u = p2

L + 2pLqL

26 / 30

Example: Properties of the Directly Constructed MIS
Model

components ⊆ component

attributes ⊆ component× probability

functional states ⊆ P(component)

initial probability ⊆ P(component)× probability

probability = {x ∈ R : 0 ≤ x ≤ 1}

components(M) = {c3, c4}
attributes(M) = {(c3, pL), (c4, pL)}

functional states(M) = {{c3, c4}, {c3}, {c4}}
initial probability(M) = {({c3, c4}, 1)}

27 / 30

Example: Transforming the Topology Model to an MIS
Model

Properties

P(Topology) P(MIS)

Topology MIS

Lifting

α1 γ2

Selection

28 / 30

Example: Construction of an MIS Model via Concretization

Π0 = [s0, · · · , s15]

u = [u0, · · · , u15]

Pc1 =



pc1 0 · · · qc1 0 · · ·
...

. . .
...

. . .

0 · · · pc1 0 · · · qc1
0 · · · 0 1 0 · · ·
...

...
...

. . .

0 · · · 0 0 · · · 1


R = ΠT

0 ∗ Pc1 ∗ Pc2 ∗ Pc3 ∗ Pc4 ∗ u

I If we select pc1 , pc2 = 1, then u4, · · · , u15 = 0 and
s4, · · · , s15 = 0 since the failed states for these components
are unreachable.

I Binding pc3 , pc4 = pL, s0 = 1, u0, u1, u2 = 1, and u3 = 0
suffice to generate an MIS model equal to our first MIS model.

29 / 30

Conclusions

I We presented a provably correct and specific approach for
model transformation based on Abstract Interpretation.

I It can be used to transform models across domains.

I It can also facilitate transformation between models of
nonfunctional and functional attributes.

I Using an example, we have demonstrated both the correctness
and specificity of our approach: we concretize a specific model
from the properties of another model.

I This research can accelerate advances in design and analysis
of sustainable infrastructure by enabling cross-domain transfer
of knowledge.

30 / 30

	Introduction
	Related Work
	Approach
	Example

