
Journal of Mathematical Biology (2020) 81:1–24
https://doi.org/10.1007/s00285-020-01492-z Mathematical Biology

Continuous and discrete modeling of HIV-1 decline
on therapy
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Abstract
Mathematical models have shed light on the dynamics of HIV- 1 infection in vivo. In
this paper, we generalize continuous mathematical models of drug therapy for HIV-1
byPerelson et al. (Science 271:1582–1586, 1996) andPerelson andNelson (SIAMRev
41:3–44, 1999) on time scales, i.e., a nonempty closed subset of real numbers in order
to derive new discrete models that predict the total concentration of plasma virus as a
function of time. One of our main goals is to compare discrete mathematical models
with the continuous model in Perelson et al. (1996) where HIV infected patients were
given protease inhibitors and sampled frequently thereafter. For the comparison, we
use experimental data collected in Perelson et al. (1996) and estimate the parameters
such as the virion clearance rate and the rate of loss of infected cells by fitting the total
concentration of plasma virus to this data set. Our results show that discrete systems
describe the best fit. In the previous models of this study, the efficacy of protease
inhibitor is assumed to be perfect. Motivated by Perelson and Nelson (1999), we
end the paper with a mathematical model of imperfect protease inhibitor and reverse
transcriptase (RT) inhibitor combination therapy of HIV-1 infection on time scales
with its stability analysis.

Keywords Time scales · HIV · Dynamic equations · Difference equations ·
Differential equations · Systems · Mathematical modeling

Mathematics Subject Classification P34N05 · 93A30 · 39A10 · 35F16 · 35G46 ·
65Q10

Portions of this work were performed under the auspices of the U.S. Department of Energy under
Contract 89233218CNA000001 and supported by NIH Grants R01-OD011095, R01-AI028433 and
P01-AI131365 (ASP).

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-020-01492-z&domain=pdf
http://orcid.org/0000-0002-2455-0002


2 E. Akın et al.

1 Introduction

The human immunodeficiency virus (HIV) infects a host’s CD4+ T cells which play
an essential role in the immune system. HIV-1 infection leads to reduction of T cells
over time. Therefore, the count of T cells is used to measure advancement of HIV-
1 infection. The population dynamics of CD4+ T cells is modeled in Perelson and
Nelson (1999) as follows

dT

dt
= s + pT

(
1 − T

Tmax

)
− dT T ,

where T is the concentration of CD4+ T cells, s is the source of new T cells from
the thymus, p is the maximum CD4+ T cells proliferation rate, Tmax is the maximum
level of CD4+ T concentration when Tmax is chosen such that dT Tmax > s and dT
is the death rate per T cell. When HIV-1 infects CD4+ T cells, they become infected
cells, I . Hence, the model of dynamics between the immune system and HIV-1 is
given in Perelson and Nelson (1999) by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dT

dt
= s + pT

(
1 − T

Tmax

)
− dT T − kV T

d I

dt
= kV T − δ I

dV

dt
= Nδ I − cV ,

(1)

where I and V are the concentrations of infected CD4+ T cells and viral particles in
plasma, respectively. The term kV T denotes the infection of CD4+ T cells by HIV-1
with the infection rate constant k. In this model, δ represents the death rate of infected
cells, c is the virus clearance rate constant, and N is the number of new virus particles
produced per infected cell.

Perelson et al. (1996) developed a mathematical model from a clinical trial where
fiveHIV-1 infected patientswere given the protease inhibitor ritonavir.After treatment,
HIV-1 RNA concentrations in plasma, viral load of genetic material, were measured
every 2 h until the 6 h, every 6 h until day 2, and every day until day 7. In this clinical
trial, 15 data points were obtained from each patient where the unit of time was in
days. System (1) is assumed to be at quasi-steady state before treatment, that is, V
and I are relatively constant yielding I ′ = 0 and V ′ = 0. Hence, kV0T0 = δ I0 and
Nδ I0 = cV0, and so c = NkT0 and I0 = kV0T0

δ
, where the subscript 0 denotes a

pretreatment quasi-steady state value.
After treatment, newly created virions are noninfectious while infectious virions

from prior to the treatment still remain. Therefore, the total virus concentration is

V = VI + VN I , (2)
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Continuous and discrete modeling of HIV-1 decline on therapy 3

where VI and VN I are the concentrations of infectious and noninfectious virions,
respectively. Drug efficacy is assumed 100% and (1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= s + pT

(
1 − T

Tmax

)
− dT T − kV T

d I

dt
= kVI T − δ I

dVI

dt
= −cVI

dVN I

dt
= Nδ I − cVN I .

(3)

Assuming that system (1) is at quasi-steady state before drug treatment and T remains
at approximately its steady state value T0, that is T = constant = T0 for 1 week after
drug treatment, (3) leads to the following system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d I

dt
= kVI T0 − δ I

dVI

dt
= −cVI

dVN I

dt
= Nδ I − cVN I

(4)

with the initial conditions
⎧⎪⎪⎨
⎪⎪⎩
I (0) = kV0T0

δ

VI (0) = V0

VN I (0) = 0.

(5)

Perelson and Nelson (1999) also develop a mathematical model for the effects of
combination therapy with both RT and protease inhibitors

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d I

dt
= (1 − ηRT )kVI T0 − δ I

dVI

dt
= (1 − ηP I )Nδ I − cVI

dVN I

dt
= ηP I Nδ I − cVN I

(6)

with the initial conditions (5), where ηRT and ηP I are the efficacy of the RT and
protease inhibitors, respectively, on anti-HIV treatment. In particular, ηP I , ηRT = 0
denote a null therapy, while ηP I , ηRT = 1 denotes a 100% effective therapy.

The systems above are continuous models of HIV-1 dynamics in vivo. According
to our knowledge, there hasn’t been any study of the discrete cases of these models.
Instead of considering a discrete model itself, we prefer unifying the continuous and
discrete analysis in one comprehensive theory, a so called time scales theory. A time
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4 E. Akın et al.

scale, denoted by T, is an arbitrary nonempty closed subset of the real numbers. The
theory of time scales was first initiated by Stefan Hilger in his PhD thesis (Hilger
1988). The set of all real numbers R, which gives rise to differential equations, the
set of all integers Z, which gives rise to difference equations, and the set of all integer
powers of a number q > 1, including 0, which gives rise to q-difference equations,
are the well known examples of time scales, see Elaydi (2005), Kelley and Peterson
(2001) and Kac and Cheung (2002).

In this paper, we first consider a mathematical model of perfect protease inhibitor
monotherapy of HIV-1 infection on time scales. One of ourmain purposes is to analyze
patient data presented in Perelson et al. (1996) on continuous and discrete cases. The
outline of this paper is as follows: In Sect. 2, time scales calculus is introduced briefly
including essentials. In Sect. 3, we formulate an initial value problem (IVP) modeling
the dynamics of HIV-1 on time scales generalizing the IVP (4), (5) and calculate the
total concentration of plasma virions on different time scales. In addition to these
models, we also introduce an alternative discrete model in Sect. 4. We compare all
these models by using nonlinear least squares fitting in Sect. 5. It turns out that the
alternative discrete model gives the best fit in hours. This motivates us to consider
another discrete model with the step-size h > 0 and this model has the best fit in days.
In the last section, we present a mathematical model of imperfect RT and protease
inhibitors combination therapy of HIV-1 infection on time scales, and analyze the
stability of the zero solution.

2 Essentials

In this section, we first include some preliminary concepts regarding the calculus on
time scales without proofs. The proofs can be found in the books written by Bohner
and Peterson (2001, 2003).

Definition 1 For t ∈ T, the forward jump operator σ : T → T is

σ(t) := inf{s ∈ T : s > t}

while the backward jump operator ρ : T → T

ρ(t) := sup{s ∈ T : s < t},

and the graininess function μ : T → [0,∞), defined as μ(t) := σ(t) − t .

If σ(t) > t , we say that t is right-scattered, while if ρ(t) < t we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Besides, if t < supT and σ(t) = t , then t is called right-dense, and if
t > inf T and ρ(t) = t , then t is called left-dense. Points that are right-dense and
left-dense at the same time are called dense. The function f σ : T → R is defined by
f σ (t) = f (σ (t)) for all t ∈ T, i.e., f σ = f ◦ σ and [t0,∞)T:=[t0,∞) ∩T. If T has
a left-scattered maximum m, then T

κ = T − {m}. Otherwise, Tκ = T.
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Continuous and discrete modeling of HIV-1 decline on therapy 5

Definition 2 Assume f : T → R is a function and let t ∈ T
κ . Then, the delta (or

Hilger) derivative of f , denoted by f Δ, on T
κ is defined to be the number (provided

it exists) such that for given any ε > 0, there is a neighborhood U = (t − δ, t + δ)

for some δ > 0 such that

|[ f σ (t) − f (s)] − f Δ(t)[σ(t) − s]| ≤ ε|σ(t) − s|

for all s ∈ U .

If T = R, then f Δ = f ′, i.e., the delta derivative coincides with the usual derivative.
If T = Z, then f Δ(t) = Δ f (t) = f (t + 1) − f (t), where Δ is the usual forward
difference operator.

Theorem 1 Assume f : T → R is a function and let t ∈ T
κ . Then we have the

following:

(i) If f is differentiable at t , then f is continuous at t .
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f Δ(t) = f σ (t) − f (t)

μ(t)
.

(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f (t) − f (s)

t − s

exists as a finite number. In this case

f Δ(t) = lim
s→t

f (t) − f (s)

t − s
.

(iv) If f is differentiable at t , then f σ (t) = f (t) + μ(t) f Δ(t).

Theorem 2 Assume f , g : T → R are differentiable at t ∈ T
κ . Then:

(i) The sum f + g : T → R is differentiable at t with

( f + g)Δ(t) = f Δ(t) + gΔ(t).

(ii) The product f g : T → R is differentiable at t with

( f g)Δ(t) = f Δ(t)g(t) + f σ (t)gΔ(t) = f (t)gΔ(t) + f Δ(t)gσ (t).

(iii) If g(t)gσ (t) 	= 0, then f
g is differentiable at t and

(
f

g

)Δ

(t) = f Δ(t)g(t) − f (t)gΔ(t)

g(t)gσ (t)
.
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6 E. Akın et al.

Definition 3 A function f : T → R is called rd-continuous provided it is continuous
at right-dense points in T and its left-sided limit exists (finite) at left dense points in
T. The set of rd-continuous f : T → R is denoted by Crd = Crd(T) = Crd(T,R).

Every rd-continuous function has an antiderivative. In particular, if t0 ∈ T, then for
t ∈ T

F :=
∫ t

t0
f (τ )Δτ

is an antiderivative of f .

Definition 4 A function f : T → R is called regressive provided

1 + μ(t) f (t) 	= 0

for all t ∈ T
κ . The set of all regressive and rd-continuous functions f : T → R is

denoted by R = R(T) = R(T,R).

Definition 5 If p, q ∈ R, then the function 
p circle minus is defined by

(
p)(t) := − p(t)

1 + μ(t)p(t)

while the function circle minus substraction is defined by

(p 
 q)(t) := p(t) − q(t)

1 + μ(t)q(t)

for all t ∈ T
κ .

Theorem 3 Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

yΔ = p(t)y, y(t0) = 1

has a unique solution ep(·, t0), the so called the exponential function on time scales.

Let a, b ∈ T with a < b, f ∈ Crd and α ∈ R. Then, if T = R

∫ b

a
f (t)Δt =

∫ b

a
f (t)dt, eα(t, t0) = eα(t−t0) and e
α = e−α(t−t0).

If T = hZ = {hk : k ∈ Z}, where h > 0 then

∫ b

a
f (t)Δt =

b/h−1∑
k=a/h

f (kh)h, eα(t, t0) = (1 + αh)(t−t0)/h and

e
α = (1 + αh)−(t−t0)/h .
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Continuous and discrete modeling of HIV-1 decline on therapy 7

We use the following properties of exponential functions on time scales in our
proofs, see Theorems 2.36 and 2.38 in Bohner and Peterson (2001).

Theorem 4 If p, q ∈ R, then

(i) e0(t, s) = 1 and ep(t, t) = 1
(ii) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s)

(iii) ep(t, s) = 1

ep(s, t)
= e
p(s, t)

(iv) ep(t, s)ep(s, r) = ep(t, r)

(v) eΔ
p
q(·, t0) = (p − q)

ep(·, t0)
eσ
q (·, t0) .

We need the following Variation of Constants Formulas on time scales.

Theorem 5 (Bohner and Peterson (2001), Theorem 2.74) Suppose p ∈ R and f ∈
Crd . Let t0 and y0 ∈ R. The unique solution of the initial value problem

yΔ = −p(t)yσ + f (t), y(t0) = y0

is given by

y(t) = e
p(t, t0)y0 +
∫ t

t0
e
p(t, τ ) f (τ )Δτ.

Theorem 6 (Bohner and Peterson (2001), Theorem 2.77) Suppose p ∈ R and f ∈
Crd . Let t0 and y0 ∈ R. The unique solution of the initial value problem

yΔ = −p(t)y + f (t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +
∫ t

t0
ep(t, σ (τ )) f (τ )Δτ.

An n× n -matrix-valued function A on a time scale T is called regressive provided
I + μ(t)A(t) is invertible for all t ∈ T

κ .

Theorem 7 (Bohner and Peterson (2001), Exercise 5.6) An n×n -matrix-valued func-
tion A is regressive iff the eigenvalues λi (t) of A(t) are regressive for all 1 ≤ i ≤ n.

The vector dynamic equation

xΔ = Ax,

where A ∈ R is a real constant n × n-matrix is considered.

Theorem 8 (Bohner and Peterson (2001), Theorem 5.30) If λ0, ξ is an eigenpair for
the constant n × n − matri x A, then x(t) = eλ0(t, t0)ξ is a solution of the vector
dynamic equation above on T.
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8 E. Akın et al.

To have an alternative discrete model to the IVP (3), (5), we need the following results.

Theorem 9 (Kelley and Peterson (2001), Theorem 3.1) Let p(t) 	= 0 and r(t) be given
for t = a, a + 1, . . .. Then,

(i) The solutions of u(t + 1) = p(t)u(t) are

u(t) = u(a)

t−1∏
s=a

p(s), (t = a, a + 1, · · ·)

(ii) All solutions of y(t + 1) − p(t)y(t) = r(t) are given by

y(t) = u(t)

[∑ r(t)

Eu(t)
+ C

]
,

where E is the shift operator defined by Eu(t) = u(t + 1), C is a constant, and
u(t) is any nonzero function from part (i).

Here, an “indefinite sum” (or “antidifference”) of y(t), denoted
∑

y(t), is any function
so that Δ

(∑
y(t)

) = y(t) for all t in the domain of y.
The following system of n linear equations:

u1(t + 1) = a11u1(t) + a12u2(t) + · · · + a1nun(t)
u2(t + 1) = a21u1(t) + a22u2(t) + · · · + a2nun(t)

...
...

...
...

un(t + 1) = an1u1(t) + an2u2(t) + · · · + annun(t)

may be written in the vector form

u(t + 1) = Au(t) (7)

where u(t) = (u1(t), u2(t), · · · , un(t))T ∈ R
n , and A = (ai j ) is an n × n real

nonsingularmatrix.Here T indicates the transpose of a vector. System (7) is considered
autonomous, or time-invariant, since the values of A are all constants. The spectral
radius of A is defined as

r(A) = max {|ξ | : ξ is an eigenvalue of A} .

The next theorem summarizes the main stability results for the linear autonomous
(time-invariant) systems (7).

Theorem 10 (Elaydi (2005), Theorem 4.13) The following statements hold:

(i) The zero solution of (7) is stable if and only if r(A) ≤ 1 and the eigenvalues of
unit modulus are semisimple, i.e., if the corresponding Jordan block is diagonal.

(ii) The zero solution of (7) is asymptotically stable if and only if r(A) < 1.
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Continuous and discrete modeling of HIV-1 decline on therapy 9

3 Dynamics of HIV-1 decline during 100% effective protease inhibitor
monotherapy

We consider one of the generalization of the IVP (4), (5)

⎧⎪⎨
⎪⎩
IΔ = kV σ

I T0 − δ I σ

VΔ
I = −cV σ

I

VΔ
N I = Nδ I σ − cV σ

N I

(8)

on [0,∞)T subject to the initial conditions (5), where all parameters are positive
constants such that δ 	= c. Here, the forward jump operator appears in the system. In
this section, our purpose is to find the total concentration of plasma virions on different
time scales. To do this, we first solve the IVP (8), (5).

Theorem 11 The unique solution (I , VI , VN I ) of the IVP (8), (5) is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I (t) = e
δ(t, 0)kV0T0
{
1
δ

+ 1
δ−c

[
eδ
c(t, 0) − 1

]}
VI (t) = e
c(t, 0)V0

VN I (t) = cV0
c−δ

{
c

c−δ

[
e
δ(t, 0) − e
c(t, 0)

] − δe
c(t, 0)
∫ t

0

1

1 + μ(τ)c
Δτ

}
,

where all parameters are positive constants such that δ 	= c.

Proof We start with the second equation of (8) with VI (0) = V0 to solve the system.
From Theorem 5, we obtain

VI (t) = e
c(t, 0)V0. (9)

Substituting VI into the first equation of (8) yields

IΔ(t) = keσ
c(t, 0)V0T0 − δ I σ (t). (10)

From Theorem 5, the IVP (10) with I (0) = kV0T0
δ

has a unique solution

I (t) = e
δ(t, 0)I (0) + kV0T0

∫ t

0
e
δ(t, τ )eσ
c(τ, 0)Δτ, t ≥ 0.

Since we assume that I is in quasi-steady state before initiation of theraphy, after
plugging I (0) into I above and using the properties of exponential functions given in
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10 E. Akın et al.

Theorem 4, we get

I (t) = e
δ(t, 0)
kV0T0

δ
+ kV0T0

∫ t

0
e
δ(t, τ )eσ
c(τ, 0)Δτ (11)

= e
δ(t, 0)
kV0T0

δ
+ kV0T0e
δ(t, 0)

∫ t

0
e
δ(0, τ )

1

eσ
c (τ, 0)

Δτ

= e
δ(t, 0)
kV0T0

δ
+ kV0T0

e
δ(t, 0)

δ − c

∫ t

0
eΔ
δ
c(τ, 0)Δτ

= e
δ(t, 0)
kV0T0

δ
+ kV0T0

e
δ(t, 0)

δ − c

[
eδ
c(t, 0) − 1

]
.

Therefore,

I (t) = e
δ(t, 0)kV0T0

{
1

δ
+ 1

δ − c

[
eδ
c(t, 0) − 1

]}
. (12)

To solve VN I , we substitute (12) into the third equation of system (8) and obtain

VΔ
N I (t) = NδkV0T0e

σ
δ(t, 0)

{
1

δ
+ 1

δ − c

[
eσ
δ
c(t, 0) − 1

]} − cV σ
N I (t). (13)

From Theorem 5 and c = NkT0, the IVP (13) with VN I (0) = 0 has a unique solution

VN I (t) = e
c(t, 0)VN I (0) + cV0δ
∫ t

0
e
c(t, τ )eσ
δ(τ, 0)

×
{
1

δ
+ 1

δ − c

[
eσ
δ
c(τ, 0) − 1

]}
Δτ.

Using VN I (0) = 0 and properties of exponential functions on time scales yield

VN I (t)

= cV0

{
c

c − δ

∫ t

0
e
c(t, τ )eσ
δ(τ, 0)Δτ + δ

δ − c

∫ t

0
e
c(t, τ )eσ
δ(τ, 0)e

σ
δ
c(τ, 0)Δτ

}

= cV0

{
c

c − δ

[
e
c(t, 0)

c − δ
(ec
δ(t, 0) − 1)

]
+ δ

δ − c

∫ t

0
e
c(t, τ )

1

eσ
δ (τ, 0)

eσ
δ (τ, 0)

eσ
c (τ, 0)

Δτ

}

= cV0

{
c

(c − δ)2

[
e
δ(t, 0) − e
c(t, 0)

] + δ

δ − c
e
c(t, 0)

∫ t

0
e
c(0, τ )

1

eσ
c (τ, 0)

Δτ

}

= cV0

{
c

(c − δ)2

[
e
δ(t, 0) − e
c(t, 0)

] + δ

δ − c
e
c(t, 0)

∫ t

0

1

1 + μ(τ)c
Δτ

}
,

where the first integration above is computed as in (11). Hence,

VN I (t) = cV0
c − δ

{
c

c − δ

[
e
δ(t, 0) − e
c(t, 0)

] − δe
c(t, 0)
∫ t

0

1

1 + μ(τ)c
Δτ

}
.

(14)
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Continuous and discrete modeling of HIV-1 decline on therapy 11

This completes the proof. �
Note that (9) and (14) imply that the total concentration of plasma virions (2) is

V (t) = e
c(t, 0)V0 + cV0
c − δ

{
c

c − δ

[
e
δ(t, 0) − e
c(t, 0)

] − δe
c(t, 0)
∫ t

0

1

1 + μ(τ)c
Δτ

}
.

(15)

In the next examples, we calculate (15) on different time scales for data analysis.

Example 1 The total viral concentration (15) turns out to be

V (t) = e−ct V0 + cV0
c − δ

{
c[e−δt − e−ct ]

c − δ
− δte−ct

}
(16)

on [0,∞) which is consistent with the total viral load in Perelson et al. (1996).

Example 2 Now consider the isolated time scales [0,∞)hZ, h > 0. In this case, the
total concentration of plasma virions is

V (t) = 1

(1 + ch)
t
h
V0 + cV0

c − δ

{
c[(1 + ch)

t
h − (1 + δh)

t
h ]

(c − δ)(1 + δh)
t
h (1 + ch)

t
h

− δt

(1 + ch)
t
h +1

}
.

(17)

In the special case of h = 1 in (17), that is on [0,∞)Z, we have

V (t) = 1

(1 + c)t
V0 + cV0

c − δ

{
c[(1 + c)t − (1 + δ)t ]
(c − δ)(1 + δ)t (1 + c)t

− δt

(1 + c)t+1

}
. (18)

4 An alternative discrete HIV-1 model

Note that system (8) turns out to be the following advanced system of first order
difference equations:

⎧⎪⎨
⎪⎩

ΔI (t) = kVI (t + 1)T0 − δ I (t + 1)

ΔVI (t) = −cVI (t + 1)

ΔVN I (t) = Nδ I (t + 1) − cVN I (t + 1)

(19)

on [0,∞)Z and the related total concentration of plasma virions of system (19) is
given by (18). In this section, we now consider an alternative discrete model that is not
advanced in order to determine which system models the dynamics of HIV-1 decline
in ART-treated patients better. In particular, we study

⎧⎪⎨
⎪⎩

ΔI (t) = kVI (t)T0 − δ I (t)

ΔVI (t) = −cVI (t)

ΔVN I (t) = Nδ I (t) − cVN I (t)

(20)
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12 E. Akın et al.

on [0,∞)Z with initial conditions (5) and the related total concentration of plasma
virions of system (20) is given by (25). A comparison of fits to patients data using
models (19) and (20) will be given in Tables 1 and 2 below after we establish some
properties of model (20).

We have the following theorem where we assume c 	= δ and c, δ 	= 1 in order to
solve (20).

Theorem 12 The unique solution (I , VI , VN I ) of the IVP (20), (5) is given by

⎧⎪⎪⎨
⎪⎪⎩
I (t) = kV0T0

δ−c

{
(1 − c)t − c(1−δ)t

δ

}
VI (t) = V0(1 − c)t

VN I (t) = cV0
c−δ

{
c

c−δ

[
(1 − δ)t − (1 − c)t

] − δt(1 − c)t−1
}

,

where all parameters are positive constants such that δ 	= c and c, δ 	= 1.

Proof System (20) can be written as a recurrence relation

⎧⎪⎨
⎪⎩
I (t + 1) = kVI (t)T0 + (1 − δ)I (t)

VI (t + 1) = (1 − c)VI (t)

VN I (t + 1) = Nδ I (t) + (1 − c)VN I (t).

(21)

Solving the second equation with VI (0) = V0 and using Theorem 9 (i), we obtain

VI (t) = VI (0)
t−1∏
s=0

(1 − c) = V0(1 − c)t . (22)

Substituting (22) into the first equation of (21), one can obtain

I (t + 1) = kV0T0(1 − c)t + (1 − δ)I (t).

By Theorem 9 (i), the solution of u∗(t + 1) = (1 − δ)u∗(t) is

u∗(t) = u∗(0)
t−1∏
s=0

(1 − δ) = (1 − δ)t ,

where u∗(0) = 1. Then by Theorem 9 (ii), we have

I (t) = u∗(t)
[∑ kV0T0(1 − c)t

u∗(t + 1)
+ C

]

= (1 − δ)t
[∑ kV0T0(1 − c)t

(1 − δ)t+1 + C

]

= (1 − δ)t
[
kV0T0(1 − c)t

(δ − c)(1 − δ)t
+ C

]
,
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where C is an arbitrary constant. Therefore,

I (t) = kV0T0(1 − c)t

δ − c
+ (1 − δ)tC, (23)

and I (0) = kV0T0
δ

implies C = − ckV0T0
δ(δ−c) . Substituting C into (23), we obtain

I (t) = kV0T0
δ − c

[
(1 − c)t − c(1 − δ)t

δ

]
.

To solve VN I , we first plug I into the third equation of (20) and then use the fact
NkT0 = c and obtain

VN I (t + 1) = cV0δ

δ − c

[
(1 − c)t − c

δ
(1 − δ)t

]
+ (1 − c)VN I (t).

By Theorem 9 (i), the solution of u(t + 1) = (1 − c)u(t) is

u(t) = u(0)
t−1∏
s=0

(1 − c) = (1 − c)t ,

where u(0) = 1. Then, we have

VN I (t) = u(t)

⎧⎨
⎩
∑ cV0δ

δ−c

[
(1 − c)t − c(1−δ)t

δ

]
u(t + 1)

+ D

⎫⎬
⎭

= (1 − c)t

⎧⎨
⎩
∑ cV0δ

δ−c

[
(1 − c)t − c(1−δ)t

δ

]
(1 − c)t+1 + D

⎫⎬
⎭

= (1 − c)t
{

cV0δ

(δ − c)(1 − c)

∑[
1 − c

δ

(
1 − δ

1 − c

)t]
+ D

}

= (1 − c)t
{

cV0δ

(δ − c)(1 − c)

[
t − c

δ

(
1 − δ

1 − c

)t 1 − c

c − δ

]
+ D

}
,

where D is an arbitrary constant and we use Theorem 9 (ii). Hence,

VN I (t) = −cV0δt(1 − c)t−1

c − δ
+ c2V0(1 − δ)t

(c − δ)2
+ (1 − c)t D.

To evaluate D, we use VN I (0) = 0 yielding D = − c2V0
(c − δ)2

, and that

VN I (t) = cV0
c − δ

{
c

c − δ

[
(1 − δ)t − (1 − c)t

] − δt(1 − c)t−1
}

, (24)
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14 E. Akın et al.

and hence the proof is completed. �
In this discrete case, the total concentration of plasma virions of the IVP (20), (5) that
follows from (22) and (24) is given by

V (t) =V0(1 − c)t + cV0
c − δ

{
c

c − δ

[
(1 − δ)t − (1 − c)t

] − δt(1 − c)t−1
}

, (25)

which is not equivalent to (18).
Note that δ > c > 1 and chosing t to be even guarantee the positiveness of VI as

in (22) and VN I as in (24).

5 Data analysis

In this section, we determine howwell the total viral concentrations obtained from our
models fit the HIV-1 RNA measurements from one reprensentative patient, namely
patient 104 in Perelson et al. (1996). Here, we use MATLAB with nonlinear least
squares fitting of data to estimate the parameters of our models.

In the previous sections, we model the dynamics of HIV-1 decline in patients on
protease inhibitor monotherapy by the IVPs (8), (5) and (20), (5). From the IVP (8),
(5), we obtain the total viral concentrations (16), (17), (18) on [0,∞)T when T is
equal to R, hZ and Z, respectively. From the alternative discrete model (20), (5), we
obtain (25) on [0,∞)Z.

In Tables 1 and 2, these total viral concentrations are represented in the second row
when T is equal to R, hZ and Z. Estimated parameters and evaluated R2

ad j , SSE and
RMSE values from the fit of (16), (17), (18) and (25) to the HIV-1 RNA data are
listed in these tables as well.

In the following two subsections, we discuss the results from the fit of the total viral
concentrations when the unit of time is in days and in hours.

5.1 Time in days

In Perelson et al. (1996), HIV-1 RNA data was measured every 2 h until the 6 h, every
6 h until day 2, and every day until day 7 and the unit of the original data is in days.

Note that the IVP (8), (5) when T = R is known as the continuous case and (16) is
the corresponding total viral load introducing in Perelson et al. (1996). From Table 1,
we conclude that the discrete cases (17) and (18) fit to the data aswell as the continuous
case (16) except for the alternative discrete case (25). (17) has the best fit when h gets
very close to zero. In fact, the continuous case is obtained when h → 0. In Perelson
et al. (1996), the lower and upper 68% confidence intervals are calculated and the
virion clearance rate is estimated as c = 3.68 day−1 that lies between 2.53 and 6.19
day−1 while the rate of loss of infected cells is estimated as δ = 0.50 day−1 that lies
between 0.47 and 0.54 day−1. Note that c and δ obtained from the nonlinear regression
analysis for the continuous case in our study are estimated as 3.11 day−1 and 0.51
day−1, and within those confidence intervals, respectively, see Table 1.
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Continuous and discrete modeling of HIV-1 decline on therapy 15

Table 1 Data analysis when time is in days results

IVP (8), (5) (20), (5)
V (16) (17) (18) (25)
T R hZ Z Z

R2
ad j 0.88916 0.87808 0.87955 0.52586

SSE 3079703800 3079703900 3346799500 13174681000

RMSE 14328.768 14328.768 14937.201 29636.33

V0 133956.89 133958.03 138869.87 110124.12

c 3.11582 3.11637 2.54322 0.62332867

δ 0.51553 0.51549 0.83074 0.62332868

h 0.00000007

Fig. 1 Fitted models in days

Since (25) results a bad fit in days, see Fig. 1, this urges us to investigate a different
time domain for (25). Therefore, we attempt scaling the input data by changing the
unit from days to hours.

5.2 Time in hours

When changing the unit from days to hours, we note that all data was collected at
times that are even when expressed in hours, i.e. t is even. We also observe that curve

123



16 E. Akın et al.

Table 2 Data analysis when time is in hours

IVP (8), (5) (20), (5)
V (16) (17) (18) (25)
T R hZ Z Z

R2
ad j 0.88916 0.87808 0.88859 0.97198

SSE 3079703800 3079703800 3095595300 778626850

RMSE 14328.768 14328.768 14365.689 7204.7524

V0 133957 133956.79 134261.42 95708.735

c 0.12983 0.12982 0.12861 1.13006

δ 0.02148 0.02148 0.02189 1.98095

h 0.00000059

Fig. 2 Fitted models in hours

fittings of (16) and (17) to the data predict the same virion concentrations, see Tables 1
and 2. On the other hand, fittings of (18) and (25) to the data are improved. Indeed,
fitting (25) to the data is not only improved significantly but also results in by far the
highest R2

ad j value and smaller errors.
For all the patients in Perelson et al. (1996), HIV-1 RNA levels increase at the

beginning of therapy, then drop down and keep decreasing. As seen in Fig. 2, (25) is
the only model capturing this behavior in hours. For t even and 1 < c < 2, the last
term in (25), −δt(1 − c)t−1, is positive and initially increases and then decreases for
the estimated parameters. Hence, this causes the initially increasing behavior of (25).
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Continuous and discrete modeling of HIV-1 decline on therapy 17

We observe that by changing the unit from days to hours the alternative discrete
curve (25) has the best fit. This leads to the important point of whether one should
discuss more discrete models for HIV-1 dynamics. Therefore, we now want to unify
and extend the continuous IVP (4), (5) and the discrete IVP (20), (5) in order to obtain
the total viral load on more discrete time settings. The model is formulated as follows:

⎧⎪⎨
⎪⎩
IΔ = kVI T0 − δ I

VΔ
I = −cVI

VΔ
N I = Nδ I − cVN I

(26)

subject to the initial conditions (5), where all parameters are positive constants such
that δ 	= c, and −c,−δ ∈ R, i.e., 1 + μ(−c) 	= 0 and 1 + μ(−δ) 	= 0.

Note that system (26) is equivalent to systems (4) and (8) on [0,∞) whereas it is
equivalent to system (20) on [0,∞)Z.

To find the total concentrations of virions, we follow similar steps of the proof of
Theorem 13. By Theorems 4 and 6, we first obtain

VI (t) = e−c(t, 0)V0

and

I (t) = kV0T0

{
ce−δ(t, 0) − δe−c(t, 0)

δ(c − δ)

}
. (27)

Substituting (27) in the third equation of system (26) and solving for VN I yield

VN I (t) = cV0
c − δ

{
c
[
e−δ(t, 0) − e−c(t, 0)

]
c − δ

− δe−c(t, 0)
∫ t

0

1

1 − μ(τ)c
Δτ

}
.

Hence, the total concentration of plasma virions is

V (t) = e−c(t, 0)V0 + cV0
c − δ

{
c
[
e−δ(t, 0) − e−c(t, 0)

]
c − δ

− δe−c(t, 0)
∫ t

0

1

1 − μ(τ)c
Δτ

}
.

(28)

As a result, (28) yields the same total concentration of plasma virions (16) on [0,∞)

and (25) obtained on [0,∞)Z. One can also calculate the total concentration of plasma
virions (28) on hZ as

V (t) = (1 − ch)
t
h V0 + cV0

c − δ

⎧⎨
⎩
c
[
(1 − δh)

t
h − (1 − ch)

t
h

]
c − δ

− δt(1 − ch)
t
h −1

⎫⎬
⎭ ,

(29)
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18 E. Akın et al.

Fig. 3 Fitted model in days obtained from hZ

which is not same as (17). Tables 1 and 2 show data fitting of (16), (17), (18) and (25).
Now we compare (17) obtained from the system with forward jump operator and (29)
obtained from the system without forward jump operator.

The data fitting of (29) is done with MATLAB fmincon and results 0.97004 R2
ad j

value, where SSE = 756676980, RMSE = 7102.4736 and estimated initial value of
virus concentration V0 = 151569.87 in days. Figure 3 shows that (29) fits to the data
better than other models with c = 8.93828, δ = 0.44710944 day−1, and h = 0.11186
in days. Note that the fittings of (29) in days and in hours result the same curve.
Estimated parameters are c = 0.35556, δ = 0.01863 hours−1, V0 = 151082.19, and
h = 2.81180 in hours with 0.96996 hours−1 R2

ad j value, where SSE = 758649430,
RMSE = 7111.7247.

When we compare all these models withMATLAB fmincon, we conclude that they
yield consistent curve fittings as before.

6 Dynamics of HIV-1 decline on combination therapy

In the previous sections, we formulate the models of interaction of the immune system
withHIV-1when the patientswere given only protease inhibitors under the assumption
of efficacy of the protease inhibitor is 100%, i.e. ηP I = 1. Mathematical model
(6) of HIV-1 infection is studied in Perelson and Nelson (1999) when patients were
given combination of imperfect protease inhibitor and RT inhibitors. Hence, under the
assumption of ηP I 	= 0, 1 and ηRT 	= 0, 1 we generalize this model on time scales as
follows:
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Continuous and discrete modeling of HIV-1 decline on therapy 19

⎧⎪⎨
⎪⎩
IΔ = (1 − ηRT )kVI T0 − δ I

VΔ
I = (1 − ηP I )Nδ I − cVI

VΔ
N I = ηP I Nδ I − cVN I

(30)

subject to the initial conditions (5) and find the total concentration of plasma virions
on different time scales by solving the IVP (30), (5).

Theorem 13 The unique solution (I , VI , VN I ) of the IVP (30), (5) is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I (t) = kT0V0(1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

λ1 + δ
eλ1(t, 0) − λ1 + cηP I

λ2 + δ
eλ2(t, 0)

}

VI (t) = V0
λ2 − λ1

{
(λ2 + cηP I )eλ1(t, 0) − (λ1 + cηP I )eλ2(t, 0)

}

VN I (t) = V0ηP I

λ2 − λ1

{
(λ2 + cηP I )eλ1(t, 0) − (λ1 + cηP I )eλ2(t, 0)

λ2 − λ1
− e−c(t, 0)

}
,

where all parameters are positive constants and

λ1,2 = −(c + δ) ± √
(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηP I ))

2
. (31)

Proof We first rewrite the first two equations as a vector dynamic equation and solve
the obtained the two dimensional linear system of I and VI . The vector dynamic
equation is as follows

[
IΔ

VΔ
I

]
=

[ −δ (1 − ηRT )kT0
(1 − ηP I )Nδ −c

] [
I
VI

]
,

where the characteristic equation is λ2 + (c+ δ)λ+ δc(1− (1−ηRT )(1−ηP I )) = 0.
Here, since we assume the patient was in quasi-steady state before treatment began,
then c = NkT0. Hence, the eigenvalues of the coefficient matrix are given as (31). By
the fact that (δ − c)2 > 0, one can get that (δ + c)2 > 4δc. Also, since 0 < ηRT < 1
and 0 < ηP I < 1, then

(δ + c)2 > 4δc > 4δc(1 − (1 − ηRT )(1 − ηP I ))

and this shows that these two eigenvalues are real. Furthermore,

0 < (c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηP I )) < (c + δ)2, (32)

which implies that −(c + δ) + √
(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηP I )) < 0.

Hence, λ1 < 0. Note that λ2 < 0 is negative by the definition. We have shown that λ1
and λ2 are real, negative and distinct eigenvalues. The vector equation is regressive
for any time scale such that 1 + λ1,2μ(t) 	= 0 for all t ∈ T

κ by Theorem 7. From the
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20 E. Akın et al.

characteristic equation for the two dimensional I and VI system, we have for i=1, 2

(1 − ηRT )(1 − ηP I ) = (λi + δ)(λi + c)

cδ
. (33)

Eigenvectors corresponding to λ1 and λ2 are

ξ1 =
[

c + λ1
(1 − ηP I )Nδ

]
, ξ2 =

[
c + λ2

(1 − ηP I )Nδ

]

respectively. By Theorem 8, it follows that

[
I
VI

]
= c1eλ1(t, 0)

[
c + λ1

(1 − ηP I )Nδ

]
+ c2eλ2(t, 0)

[
c + λ2

(1 − ηP I )Nδ

]
, (34)

where c1 and c2 are arbitrary constants. To find c1 and c2, we use the initial conditions
I (0) = kV0T0

δ
and VI (0) = V0 with the properties of exponential functions on time

scales. Hence, we get the following equations

kV0T0 = c1δ(c + λ1) + c2δ(c + λ2)

V0 = c1(1 − ηP I )Nδ + c1(1 − ηP I )Nδ

with the constants

c1 = V0(λ2 + cηP I )

Nδ(1 − ηP I )(λ2 − λ1)
= kV0T0(λ2 + cηP I )(1 − ηRT )

(λ1 + δ)(λ1 + c)(λ2 − λ1)

and

c2 = − V0(λ1 + cηP I )

Nδ(1 − ηP I )(λ2 − λ1)
= −kV0T0(λ1 + cηP I )(1 − ηRT )

(λ2 + δ)(λ2 + c)(λ2 − λ1)
,

where we use (33) to get equivalent relations for c1 and c2. Now, substituting c1 and
c2 into I of (34) yields

I (t) = c1eλ1(t, 0)(1 − ηP I )Nδ + c2eλ2(t, 0)(1 − ηP I )Nδ

= eλ1(t, 0) − kV0T0(λ1 + cηP I )(1 − ηRT )

(λ2 + δ)(λ2 − λ1)
eλ2(t, 0).

Therefore,

I (t) = kT0V0(1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

λ1 + δ
eλ1(t, 0) − λ1 + cηP I

λ2 + δ
eλ2(t, 0)

}
. (35)

Similarly, substituting c1 and c2 into VI of (34) yields

VI (t) = V0(λ2 + cηP I )

λ2 − λ1
eλ1(t, 0) − V0(λ1 + cηP I )

λ2 − λ1
eλ2(t, 0).
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Hence,

VI (t) = V0
λ2 − λ1

{
(λ2 + cηP I )eλ1(t, 0) − (λ1 + cηP I )eλ2(t, 0)

}
.

Substituting (35) into the third equation of (30) results

VΔ
N I (t)=

V0δcηP I (1 − ηRT )

λ2−λ1

{
λ2+cηP I

λ1+δ
eλ1(t, 0)−

λ1 + cηP I

λ2+δ
eλ2(t, 0)

}
− cVN I .

(36)

From Theorem 6, (36) with VN I (0) = 0 has a unique solution

VN I (t) =
∫ t

0
e−c(t, σ (τ ))

V0δcηP I (1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

λ1 + δ
eλ1 (τ, 0) − λ1 + cηP I

λ2 + δ
eλ2 (τ, 0)

}
Δτ

= V0δcηP I (1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

λ1 + δ

∫ t

0
e−c(t, σ (τ ))eλ1 (τ, 0)Δτ

− λ1 + cηP I

λ2 + δ

∫ t

0
e−c(t, σ (τ ))eλ2 (τ, 0)Δτ

}

= V0δcηP I (1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

λ1 + δ

e−c(t, 0)

λ1 + c

∫ t

0
eΔ
λ1
(−c)(τ, 0)Δτ

− λ1 + cηP I

λ2 + δ

e−c(t, 0)

λ2 + c

∫ t

0
eΔ
λ2
(−c)(τ, 0)Δτ

}

= V0δcηP I (1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

λ1 + δ

e−c(t, 0)

λ1 + c

[
eλ1
(−c)(t, 0) − 1

]

− λ1 + cηP I

λ2 + δ

e−c(t, 0)

λ2 + c

[
eλ2
(−c)(t, 0) − 1

] }
.

Therefore,

VN I (t) = V0δcηP I (1 − ηRT )

λ2 − λ1

{
λ2 + cηP I

(λ1 + δ)(λ1 + c)
eλ1 (t, 0) − λ2 + cηP I

(λ1 + δ)(λ1 + c)
e−c(t, 0)

}

− V0δcηP I (1 − ηRT )

λ2 − λ1

{
λ1 + cηP I

(λ2 + δ)(λ2 + c)
eλ2 (t, 0) + λ1 + cηP I

(λ1 + δ)(λ1 + c)
e−c(t, 0)

}
.

Substituting (33) into the above equation and then simplifying the resulting equation,
one can get

VN I = V0ηP I

λ2 − λ1

{
(λ2 + cηP I )eλ1(t, 0) − (λ1 + cηP I )eλ2(t, 0)

λ2 − λ1
− e−c(t, 0)

}
.

This completes the proof. �
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Hence, the total concentration of plasma virions is given by

V (t) = V0
1 − ηP I

{
(λ2 + cηP I )eλ1(t, 0) − (λ1 + cηP I )eλ2(t, 0)

λ2 − λ1
− ηP I e−c(t, 0)

}
.

(37)

System (30) with ηRT = 0 and ηP I = 1 reduces to (26). Note that corresponding total
viral load (37) does not reduce to (28) due to the singularity.

System (30) on [0,∞) has eigenvalues −c and (31) that are real, negative and
distinct. Hence, the zero solution of system (30) on [0,∞) is asymptotically stable.
One can also consider system (30) on [0,∞)Z and write it as

⎧⎪⎨
⎪⎩
I (t + 1) = (1 − δ)I (t) + (1 − ηRT )kT0VI (t)

VI (t + 1) = (1 − ηP I )Nδ I (t) + (1 − c)VI (t)

VN I (t + 1) = ηP I Nδ I (t) + (1 − c)VN I (t).

(38)

In the following theorem, we discuss the behavior of the zero solution of system (38).

Theorem 14 If c + δ < 2, the zero solution of system (38) is asymptotically stable.

Proof Assume c + δ < 2. An equivalent vector equation of system (38) has the
companion matrix

A =
⎡
⎣ 1 − δ (1 − ηRT )kT0 0

(1 − ηP I )Nδ 1 − c 0
ηP I Nδ 0 1 − c

⎤
⎦

whose characteristic equation is

(1 − c − ξ)
[
(1 − δ − ξ)(1 − c − ξ) − δc(1 − ηRT )(1 − ηP I )

] = 0,

and the eigenvalues are ξ1 = 1−c, ξ2,3 = −(c+δ−2)±
√

(c+δ−2)2−4δc(1−(1−ηRT )(1−ηP I ))

2 .
Note that ξi for i = 1, 2, 3 are real. Since 0 < c < 2, |ξ1| < 1. From (32) and the
assumption, we have

0 <
−(c + δ − 2)

2
<

−(c + δ − 2) + √
(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηP I ))

2
< 1.

Hence, |ξ2| < 1. Furthermore, since 2(δ + c) − δc(1− (1− ηRT )(1− ηP I )) < 4 and
4δc(1 − (1 − ηRT )(1 − ηP I )) < 4δc, we have

c + δ − 4 < −
√

(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηP I )) < δ − c

and so −1 < −δ − c + 2
√

(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηP I )) < 1 − c. The
positivity of c implies that |ξ3| < 1. Therefore, from Theorem 10 the zero solution of
system (38) is asymptotically stable. This completes the proof. �
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7 Conclusion

In this study, one of our goals was to call attention to discrete models of the HIV-1
infection and make a comparison with the existing continuous model in Perelson et al.
(1996).

We obtain the total concentration of plasma virus as a function of time for each
model. Then, we test the new discrete models (17), (18) and (25) with data from a
clinical trial and find the fitted new models to be as accurate as the continuous model
(16) and in some cases much better.

Based on the findings, the discrete model (25) on Z is found to yield the best fit
in hours. This motivated us to study other discrete models which have the best fit in
days. It turns out that the latest proposed discrete model (29) on hZ achieves an almost
equally good fit in both units. Moreover, in the continuous model (16) the clearance
rate c and the rate of loss δ are estimated as 3.11 day−1 and 0.51 day−1, respectively,
while the clearance rate c and the rate of loss δ are estimated as 8.93 day−1 and 0.44
day−1 in the discrete model (29).

In these models, the patients were given protease inhibitor monotherapy under the
assumption of the efficacy of the protease inhibitor is perfect. In addition, we consider
a mathematical model of imperfect protease inhibitor and RT inhibitor combination
therapy of HIV-1 infection on time scales and show that the zero solution is asymp-
totically stable.

By considering mathematical models on time scales, i.e. dynamic models, one
can derive solutions of corresponding continuous and discrete models directly from
dynamicmodels. This helps to avoid solvingmodels individually on their own domain.
This has shown to be significant when considering the model of HIV-1 dynamics. It
is also worth to mention that not only one continuous model can be obtained from a
mathematical model on time scales, but also many discrete models. In this work, one
of the models on hZ, namely (29), has an excellent fit to the data, captures the behavior
of the data perfectly no matter what the unit of time and has a better fit compared to
the existing continuous model in literature. Therefore, one can consider modeling on
other discrete time scales such as disjoint closed intervals, the set of all integer powers
of a number q > 0, including zero etc. which may result in better fitting.
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