# INTERNATIONAL PUBLICATIONS (USA) 

Communications on Applied Nonlinear Analysis<br>Volume (), Number ,<br>Oscillation Criteria for Fourth-Order<br>Nonlinear Dynamic Equations

Ravi Agarwal<br>Florida Institute of Technology<br>Faculty of Mathematics<br>Melbourne, FL 32901, USA<br>agarwal@fit.edu<br>Elvan Akın-Bohner<br>Missouri University of Science and Technology<br>Faculty of Mathematics and Statistics<br>Rolla, MO 65409, USA<br>akine@mst.edu<br>Shurong Sun<br>University of Jinan<br>Faculty of Science<br>Jinan, Shandong 250022, P. R. China<br>sshrong@163.com<br>Communicated by Ram Verma<br>(Received April 2011; Accepted )


#### Abstract

Some oscillatory criteria for fourth order difference and differential equations are generalized to arbitrary time scales.


Key words: Oscillation, fourth-order, dynamic equations, time scales.
AMS Subject Classification: 34N05, 39A10, 39A21.

## 1 Introduction

This paper is concerned with the oscillatory behavior of fourth-order nonlinear dynamic equations

$$
\begin{equation*}
\left(p(t)\left(x^{\Delta^{2}}\right)^{\alpha}\right)^{\Delta^{2}}(t)+q(t) f\left(x^{\sigma}\right)(t)=0, t \in \mathbb{T} \tag{1}
\end{equation*}
$$

where $\alpha$ is the ratio of two positive odd integers, $p, q \in \mathrm{C}_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{+}\right)$, and $f \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ such that $x f(x)>0$ and $f^{\prime}(x) \geq 0$ for $x \neq 0$.

A time scale $\mathbb{T}$ is a nonempty closed subset of real numbers. The delta-derivative $f^{\Delta}$ for a function $f$ defined on $\mathbb{T}$ turns out to be $f^{\Delta}=f^{\prime}$ (the usual derivative) if $\mathbb{T}=\mathbb{R}$ and $f^{\Delta}=\Delta f$ (the usual forward difference operator) if $\mathbb{T}=\mathbb{Z}$. Here $\sigma: \mathbb{T} \mapsto \mathbb{T}$ is the forward jump operator which gives the next point in $\mathbb{T}$. The study of dynamic equations on time scales is a fairly new topic, and work in this area is rapidly growing. It is introduced well in the fundamental texts by M. Bohner and A. Peterson in $[8,9]$. For recent contributions concerning the oscillation of differential, difference and dynamic equations, see the books $[2,3,4,5,8,9]$ and the papers $[1,10,11,12,13,15,16]$.

The main purpose of this paper is to pursue a systematic study for the oscillation of equation (1). For that reason, we assume that

$$
\begin{equation*}
\int^{\infty} p^{-\frac{1}{\alpha}}(t) \Delta t=\infty \tag{2}
\end{equation*}
$$

and there exists a strictly increasing function $\beta: \mathbb{T} \rightarrow \mathbb{T}$ such that $\beta^{2}(\mathbb{T}):=\beta(\beta(\mathbb{T}))$ is a time scale, $t<\beta(t)$ for all $t \in \mathbb{T}$ and $\beta^{2}$ is delta-differentiable. In Section 2 , we prove a crucial lemma and give some preliminary results. In Section 3, we obtain the oscillation criteria for (1) as well as for special cases of (1) depending on $\alpha \geq 1$ and $\alpha<1$. Finally, we establish the oscillation criteria for some delay equations in the last section.

Throughout we assume that $\mathbb{T}$ is an unbounded time scale. For convenience of notation, we let $\left[t_{0}, \infty\right) \mathbb{T}=\left[t_{0}, \infty\right) \cap \mathbb{T}, t_{0} \in \mathbb{T}$, and $x^{\Delta^{2}}=x^{\Delta \Delta}$. By $\mathrm{C}(M, N)\left(\mathrm{C}_{\mathrm{rd}}(M, N)\right)$ we mean the set of all continuous (right-dense continuous) functions defined on the set $M$ to the set $N$. We denote $\tau=\beta^{2}$. We introduce the operators $L_{i}, i=0,1,2,3,4$, as follows:

$$
\begin{equation*}
L_{0} x=x, L_{1} x=\left(L_{0} x\right)^{\Delta}, L_{2} x=p\left\{\left(L_{1} x\right)^{\Delta}\right\}^{\alpha}, L_{3} x=\left(L_{2} x\right)^{\Delta}, L_{4} x=\left(L_{3} x\right)^{\Delta} \tag{3}
\end{equation*}
$$

We recall that a solution of equation (1) is said to be oscillatory on $\left[t_{0}, \infty\right) \mathbb{T}$ in case it is neither eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory. Equation (1) is said to be oscillatory in case all of its solutions are oscillatory.

## 2 Preliminaries

In this section, we first discuss possible sign conditions for the operators defined in (3) in case a solution of (1) is eventually positive. Then we obtain a crucial lemma. We finish this section with some preliminary results.

If $x$ is an eventually positive solution of (1), then $L_{4} x(t)<0$ eventually. Since (2) holds, it follows that $L_{i} x(t), i=1,2,3$, are eventually of one sign. There are eight different sign combinations for these functions. It is easy to show that it is not possible that $L_{i} x(t)>0$, $L_{i+1} x(t)<0, L_{i+2} x(t)<0$ and $L_{i} x(t)<0, L_{i+1} x(t)>0, L_{i+2} x(t)>0$ for $i \in\{0,1,2\}$, see [7]. There are only two possibilities left, namely
(I) $L_{0} x(t)>0, L_{1} x(t)>0, L_{2} x(t)>0, L_{3} x(t)>0$, and $L_{4} x(t)<0$ for $t \geq t_{0}$;
(II) $L_{0} x(t)>0, L_{1} x(t)>0, L_{2} x(t)<0, L_{3} x(t)>0$, and $L_{4} x(t)<0$ for $t \geq t_{0}$,
where $t_{0}$ is sufficiently large enough.
Case (I). Suppose $L_{0} x(t)>0, L_{1} x(t)>0, L_{2} x(t)>0, L_{3} x(t)>0$, and $L_{4} x(t)<0$ for $t \geq t_{0}$. Since $L_{3} x(t)>0$ is decreasing for $t \geq t_{0}$, we get

$$
L_{2} x(t)-L_{2} x\left(t_{0}\right)=\int_{t_{0}}^{t} L_{3} x(s) \Delta s
$$

hence

$$
p(t)\left\{\left(L_{1} x\right)^{\Delta}\right\}^{\alpha}(t) \geq\left(t-t_{0}\right) L_{3} x(t)
$$

thus

$$
\begin{equation*}
x^{\Delta^{2}}(t) \geq\left(\frac{t-t_{0}}{p(t)}\right)^{\frac{1}{\alpha}} L_{3}^{\frac{1}{\alpha}} x(t) \text { for } t \geq t_{0} \tag{4}
\end{equation*}
$$

Integrating (4) from $t_{0}$ to $t$, using (I) and the decreasing property of $L_{3} x(t), t \geq t_{0}$, we obtain

$$
x^{\Delta}(t) \geq L_{3}^{\frac{1}{\alpha}} x(t) \int_{t_{0}}^{t}\left(\frac{s-t_{0}}{p(s)}\right)^{\frac{1}{\alpha}} \Delta s \text { for } t \geq t_{0}
$$

and repeating the same process yields

$$
x(t) \geq L_{3}^{\frac{1}{\alpha}} x(t) \int_{t_{0}}^{t}\left(\int_{t_{0}}^{u}\left(\frac{s-t_{0}}{p(s)}\right)^{\frac{1}{\alpha}} \Delta s\right) \Delta u \text { for } t \geq t_{0}
$$

Case (II). Suppose $L_{0} x(t)>0, L_{1} x(t)>0, L_{2} x(t)<0, L_{3} x(t)>0$, and $L_{4} x(t)<0$ for $t \geq t_{0}$. From sup $\mathbb{T}=\infty$, we see that there exists an increasing function $\beta: \mathbb{T} \rightarrow \mathbb{T}$ such that $t<\beta(t)$ for all $t \in \mathbb{T}$. Then note that $L_{3} x(t)>0$ is decreasing and $L_{2} x(t)<0$ for $t \geq t_{0}$. From

$$
L_{2} x(\beta(t))-L_{2} x(t)=\int_{t}^{\beta(t)} L_{3} x(s) \Delta s
$$

we get that

$$
-L_{2} x(t) \geq(\beta(t)-t) L_{3} x(\beta(t))
$$

which can be rewritten as

$$
\begin{equation*}
-x^{\Delta^{2}}(t) \geq\left(\frac{\beta(t)-t}{p(t)}\right)^{\frac{1}{\alpha}} L_{3}^{\frac{1}{\alpha}} x(\beta(t)) \tag{5}
\end{equation*}
$$

Integrating (5) again from $t$ to $\beta(t)$, we obtain

$$
x^{\Delta}(t) \geq L_{3}^{\frac{1}{\alpha}} x\left(\beta^{2}(t)\right) \int_{t}^{\beta(t)}\left(\frac{\beta(s)-s}{p(s)}\right)^{\frac{1}{\alpha}} \Delta s
$$

and so

$$
x(t) \geq L_{3}^{\frac{1}{\alpha}} x\left(\beta^{2}(t)\right) \int_{t_{0}}^{t} \int_{s}^{\beta(s)}\left(\frac{\beta(u)-u}{p(u)}\right)^{\frac{1}{\alpha}} \Delta u \Delta s
$$

For $t \geq t_{0}$, we set

$$
h\left(t, t_{0} ; p\right):=\min \left\{\int_{t_{0}}^{t}\left(\frac{s-t_{0}}{p(s)}\right)^{\frac{1}{\alpha}} \Delta s, \int_{t}^{\beta(t)}\left(\frac{\beta(s)-s}{p(s)}\right)^{\frac{1}{\alpha}} \Delta s\right\}
$$

and

$$
H\left(t, t_{0} ; p\right):=\int_{t_{0}}^{t} h\left(s, t_{0} ; p(s)\right) \Delta s
$$

Combining these inequalities, we obtain the following crucial lemma.
Lemma 2.1 Let $x(t)$ be a positive solution of (1) for $t \geq t_{0}$. Then, for all $t \geq t_{0}$,

$$
x^{\Delta}(t) \geq h\left(t, t_{0} ; p\right) L_{3}^{\frac{1}{\alpha}} x(\tau(t))
$$

and

$$
x(t) \geq H\left(t, t_{0} ; p\right) L_{3}^{\frac{1}{\alpha}} x(\tau(t))
$$

We also need the following lemma.
Lemma 2.2 [14] If $X$ and $Y$ are nonnegative, then

$$
X^{\lambda}-\lambda X Y^{\lambda-1}+(\lambda-1) Y^{\lambda} \geq 0, \lambda>1
$$

where equality holds if and only if $X=Y$.
The following chain rule is extracted from [13] and plays an important role in this paper.
Lemma 2.3 Assume that $\tau: \mathbb{T} \rightarrow \mathbb{R}$ is strictly increasing and $\tilde{\mathbb{T}}:=\tau(\mathbb{T}) \subset \mathbb{T}$ is a time scale such that $\tau \circ \sigma=\sigma \circ \tau$. Let $x: \tilde{\mathbb{T}} \rightarrow \mathbb{R}$. If $\tau^{\Delta}(t)$ and $x^{\Delta}(\tau(t))$ exist for $t \in \mathbb{T}^{\kappa}$, then $(x \circ \tau)^{\Delta}(t)$ exists, and $(x \circ \tau)^{\Delta}(t)=x^{\Delta}(\tau(t)) \tau^{\Delta}(t)$.

From Remarks 4.1 and 4.2 in [6], we have the following result.
Lemma 2.4 Assume $x \in \mathrm{C}_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{R}\right)$.
(i) If $x(t)>0, x^{\Delta}(t) \leq 0$ on $\left[t_{0}, \infty\right) \mathbb{T}$ and $\lambda<1$, then

$$
\int_{t}^{\infty} \frac{-x^{\Delta}(s)}{x^{\lambda}(s)} \Delta s<\infty, t \in\left[t_{0}, \infty\right) \mathbb{T}^{2}
$$

(ii) If $x(t)>0, x^{\Delta}(t) \geq 0$ on $\left[t_{0}, \infty\right) \mathbb{T}$ and $\lambda>1$, then

$$
\int_{t}^{\infty} \frac{x^{\Delta}(s)}{\left(x^{\sigma}(s)\right)^{\lambda}} \Delta s<\infty, t \in\left[t_{0}, \infty\right) \mathbb{T}
$$

## 3 Oscillation Criteria for (1)

Throughout this paper, we assume $\tau \circ \sigma=\sigma \circ \tau$. In what follows we assume that

$$
\begin{equation*}
f^{\frac{1}{\alpha}-1}(u) g(u, v) \geq k>0 \text { for } u, v \neq 0 \tag{6}
\end{equation*}
$$

where $k$ is a constant and

$$
\begin{equation*}
g(u, v)=\int_{0}^{1} f^{\prime}(h u+(1-h) v) d h \tag{7}
\end{equation*}
$$

Theorem 3.1 Assume that (2), (6) and (7) hold, and there exists a function $r:\left[t_{0}, \infty\right) \mathbb{T} \rightarrow$ $\mathbb{R}^{+}$such that

$$
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[r(s) q(\tau(s)) \tau^{\Delta}(s)-\left(\frac{1}{k^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(r^{\Delta}(t)\right)^{1+\alpha}}{\left(r(t) h\left(t, t_{0} ; p\right)\right)^{\alpha}}\right)\right] \Delta s=\infty
$$

where $h\left(t, t_{0} ; p\right)$ is defined as in Lemma 2.1. Then equation (1) is oscillatory.
Proof: Let $x$ be an eventually positive solution of (1), say $x(t)>0$ for all $t \geq t_{0}, t_{0} \in \mathbb{T}$. Then from (1), we see that $L_{4} x(t)<0$ for all $t \geq t_{0}$ and hence $L_{i} x(t), i=1,2,3$, are eventually of one sign for all $t \geq t_{0}$. From the earlier argument in Section $2, L_{3} x(t)>0$ is decreasing and $L_{1} x(t)>0$ for all $t \geq t_{1} \geq t_{0}, t_{1} \in \mathbb{T}$. By Lemma 2.1, there exists $t_{2} \geq t_{1}, t_{2} \in \mathbb{T}$ such that

$$
\begin{equation*}
x^{\Delta}(t) \geq h\left(t, t_{2} ; p\right) L_{3}^{\frac{1}{\alpha}} x(\tau(t)) \text { for } t \geq t_{2} \tag{8}
\end{equation*}
$$

Define

$$
w(t)=r(t) \frac{L_{3} x(\tau(t))}{f(x(t))} \text { for } t \geq t_{2}
$$

Then by Lemma 2.3 and [ 8 , Theorem 1.90], for $t \geq t_{0}$, we have

$$
\begin{align*}
w^{\Delta}(t)= & r^{\Delta}(t) \frac{L_{3} x(\tau(\sigma(t)))}{f(x(\sigma(t)))}+r(t) \frac{\left[L_{3} x(\tau(t))\right]^{\Delta} f(x(t))-L_{3} x(\tau(t))[f(x(t))]^{\Delta}}{f(x(t)) f(x(\sigma(t)))} \\
= & r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) \frac{q(\tau(t)) f\left(x^{\sigma}(\tau(t))\right) \tau^{\Delta}(t) f(x(t))}{f(x(t)) f(x(\sigma(t)))} \\
& -r(t) L_{3} x(\tau(t)) \frac{x^{\Delta}(t) \int_{0}^{1} f^{\prime}\left[(1-h) x(t)+h x^{\sigma}(t)\right] d h}{f(x(t)) f(x(\sigma(t)))} \\
\leq & r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) q(\tau(t)) \tau^{\Delta}(t)-r(t) L_{3} x(\tau(t)) x^{\Delta}(t) \frac{g\left(x^{\sigma}(t), x(t)\right)}{f(x(t)) f(x(\sigma(t)))} \\
\leq & r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) q(\tau(t)) \tau^{\Delta}(t)-k r(t) L_{3} x(\tau(t)) \frac{x^{\Delta}(t)}{f^{1+\frac{1}{\alpha}}(x(\sigma(t)))} \\
\leq & r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) q(\tau(t)) \tau^{\Delta}(t)-k r(t) L_{3}^{1+\frac{1}{\alpha}} x(\tau(t)) h\left(t, t_{2} ; p\right) \frac{1}{f^{1+\frac{1}{\alpha}}(x(\sigma(t)))} \\
\leq & r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) q(\tau(t)) \tau^{\Delta}(t)-k r(t) h\left(t, t_{2} ; p\right) \frac{w^{1+\frac{1}{\alpha}}(\sigma(t))}{r^{1+\frac{1}{\alpha}}(x(\sigma(t)))} . \tag{9}
\end{align*}
$$

Set

$$
X=\left[k r(t) h\left(t, t_{2} ; p\right)\right]^{\frac{\alpha}{\alpha+1}} \frac{w^{\sigma}(t)}{r^{\sigma}(t)}, \quad \lambda=\frac{\alpha+1}{\alpha}>1
$$

and

$$
Y=\left(\frac{\alpha}{\alpha+1}\right)^{\alpha}\left(\frac{r^{\Delta}(t)}{r^{\sigma}(t)}\right)^{\alpha}\left\{\left[k r(t) h\left(t, t_{2} ; p\right)\right]^{-\frac{\alpha}{\alpha+1}} r^{\sigma}(t)\right\}^{\alpha}
$$

in Lemma 2.2 to conclude that for $t \geq t_{3}>t_{2}, t_{3} \in \mathbb{T}$

$$
r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-k r(t) h\left(t, t_{2} ; p\right) \frac{w^{1+\frac{1}{\alpha}}(\sigma(t))}{r^{1+\frac{1}{\alpha}}(\sigma(t))} \leq \frac{1}{k^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(r^{\Delta}(t)\right)^{1+\alpha}}{\left(r(t) h\left(t, t_{2} ; p\right)\right)^{\alpha}}
$$

and so

$$
\begin{equation*}
w^{\Delta}(t) \leq-r(t) q(\tau(t)) \tau^{\Delta}(t)+\frac{1}{k^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(r^{\Delta}(t)\right)^{1+\alpha}}{\left(r(t) h\left(t, t_{2} ; p\right)\right)^{\alpha}}, t \geq t_{3} \tag{10}
\end{equation*}
$$

Integrating both of sides of (10) from $t_{3}$ to $t \geq t_{3}$, we obtain
$w(t)-w\left(t_{3}\right) \leq-\int_{t_{3}}^{t}\left[r(s) q(\tau(s)) \tau^{\Delta}(s)-\left(\frac{1}{k^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(r^{\Delta}(s)\right)^{1+\alpha}}{\left(r(s) h\left(s, t_{2} ; p\right)\right)^{\alpha}}\right)\right] \Delta s \rightarrow-\infty$ as $t \rightarrow \infty$,
which contradicts the fact that $w(t)>0$ for $t \geq t_{2}$.
Now let

$$
Q(t):=\int_{t}^{\infty} q(\tau(s)) \tau^{\Delta}(s) \Delta s \text { and } Q^{*}(t):=r(t) Q(t)
$$

For the next three results, we obtain the oscillation criteria for (1) and special cases of (1) depending on $\alpha$.

Theorem 3.2 Let $0<\alpha \leq 1$ and assume that (2), (6) and (7) hold. If there exists a function $r:\left[t_{0}, \infty\right) \mathbb{T} \rightarrow \mathbb{R}^{+}$such that $Q^{*}(t)>0$ and

$$
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[p(s) q(\tau(s)) \tau^{\Delta}(s)-\frac{1}{4 k} \frac{\left(r^{\Delta}(s)\right)^{2} Q^{1-\frac{1}{\alpha}}(\sigma(s))}{r(s) h\left(s, t_{0} ; p\right)}\right] \Delta s=\infty
$$

where $h\left(t, t_{0} ; p\right)$ is defined as in Lemma 2.1, then equation (1) is oscillatory.
Proof: Let $x$ be a nonoscillatory solution of equation (1), say $x(t)>0$ for $t \geq t_{0}, t_{0} \in \mathbb{T}$. Define

$$
y(t)=\frac{L_{3} x(\tau(t))}{f(x(t))} \text { for } t \geq t_{0}
$$

Then, similar to the proof of Theorem 3.1, we have $y^{\Delta}(t) \leq-q(\tau(t)) \tau^{\Delta}(t)$, and so $y(t) \geq Q(t)$ for $t \geq t_{0}$. Next, we define

$$
w(t)=r(t) \frac{L_{3} x(\tau(t))}{f(x(t))} \text { for } t \geq t_{0}
$$

Then $w(t) \geq r(t) Q(t)=Q^{*}(t), t \geq t_{0}$. Proceeding as in the proof of Theorem 3.1, we obtain (9) for $t \geq t_{2}, t_{2} \in \mathbb{T}$. Now, for $t \geq t_{3}, t_{3} \in \mathbb{T}, t_{3} \geq t_{2}$ we obtain

$$
\begin{aligned}
w^{\Delta}(t) & \leq r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) q(\tau(t)) \tau^{\Delta}(t)-k r(t) h\left(t, t_{2} ; p\right) \frac{w^{1+\frac{1}{\alpha}}(\sigma(t))}{r^{1+\frac{1}{\alpha}}(x(\sigma(t)))} \\
& \leq r^{\Delta}(t) \frac{w^{\sigma}(t)}{r^{\sigma}(t)}-r(t) q(\tau(t)) \tau^{\Delta}(t)-k r(t) h\left(t, t_{2} ; p\right) r^{-1-\frac{1}{\alpha}}(\sigma(t))\left(Q^{*}\right)^{\frac{1}{\alpha}-1}(\sigma(t)) w^{2}(\sigma(t) \\
& =-r(t) q(\tau(t)) \tau^{\Delta}(t)+\frac{1}{4 k} \frac{\left(r^{\Delta}(t)\right)^{2} Q^{1-\frac{1}{\alpha}}(\sigma(t))}{r(t) h\left(t, t_{2} ; p\right)} \\
& -\left[\sqrt{k r(t) r^{-2}(\sigma(t)) h\left(t, t_{2} ; p\right) Q^{\frac{1}{\alpha}-1}(\sigma(t))} w^{\sigma}(t)-\frac{r^{\Delta}(t)}{2 r^{\sigma}(t) \sqrt{k r(t) r^{-2}(\sigma(t)) h\left(t, t_{2} ; p\right) Q^{\frac{1}{\alpha}-1}(\sigma(t))}}\right]^{2} \\
& \leq-r(t) q(\tau(t)) \tau^{\Delta}(t)+\frac{1}{4 k} \frac{\left(r^{\Delta}(t)\right)^{2} Q^{1-\frac{1}{\alpha}}(\sigma(t))}{r(t) h\left(t, t_{2} ; p\right)}
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 3.1 and hence omitted.
The following result is concerned with the oscillation of a special case of equation (1), namely, the equation

$$
\begin{equation*}
L_{4}(x(t))+q(t) x^{\alpha}(\sigma(t))=0 \tag{11}
\end{equation*}
$$

Theorem 3.3 Let $\alpha \geq 1$ and assume that (2) holds. If there exists a function $r: \quad\left[t_{0}, \infty\right) \mathbb{T} \rightarrow$ $\mathbb{R}^{+}$such that

$$
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[p(s) q(\tau(s)) \tau^{\Delta}(s)-\frac{\left(r^{\Delta}(t)\right)^{2}}{4 \alpha r(t) h^{\alpha}\left(t, t_{0} ; p\right)\left(t-t_{0}\right)^{\alpha-1}}\right] \Delta s=\infty
$$

where $h\left(t, t_{0} ; p\right)$ is defined as in Lemma 2.1, then all bounded solutions of equation (11) are oscillatory.

Proof: Let $x(t)$ be an eventually bounded positive solution of equation (11). It is easy to see that $x(t)$ satisfies (II). Proceeding as in the proof of Theorem 3.1, we obtain (8) for $t \geq t_{2}$, $t_{2} \in \mathbb{T}$, and we can easily see that

$$
\begin{equation*}
x(t) \geq\left(t-t_{2}\right) x^{\Delta}(t), t \geq t_{2} \tag{12}
\end{equation*}
$$

Define

$$
w(t)=r(t) \frac{L_{3}(x(\tau(t)))}{x^{\alpha}(t)}, t \geq t_{2}
$$

By Lemma 2.3, we can show that $\left[x^{\alpha}(t)\right]^{\Delta} \geq \alpha x^{\Delta}(t) x^{\alpha-1}(t)$. Then from (8), for $t \geq t_{2}$, we have

$$
\begin{aligned}
w^{\Delta}(t) & =r^{\Delta}(t) \frac{L_{3} x(\tau(\sigma(t)))}{x^{\alpha}(\sigma(t))}+r(t) \frac{x^{\alpha}(t)\left(L_{3} x(\tau(t))\right)^{\Delta}-L_{3} x(\tau(t))\left(x^{\alpha}(t)\right)^{\Delta}}{x^{\alpha}(t) x^{\alpha}(\sigma(t))} \\
& \leq \frac{r^{\Delta}(t)}{r^{\sigma}(t)} w^{\sigma}(t)-r(t) q(\tau(t)) \tau^{\Delta}(t)-r(t) L_{3} x(\tau(t)) \frac{\left(x^{\alpha}(t)\right)^{\Delta}}{x^{\alpha}(t) x^{\alpha}(\sigma(t))} \\
& \leq \frac{r^{\Delta}(t)}{r^{\sigma}(t)} w^{\sigma}(t)-r(t) q(\tau(t)) \tau^{\Delta}(t)-\alpha r(t) L_{3} x(\tau(t))\left(x^{\Delta}(t)\right)^{\alpha}\left(x^{\Delta}(t)\right)^{1-\alpha} \frac{x^{\alpha-1}(t)}{\left(x^{\alpha}(\sigma(t))\right)^{2}} \\
& \leq \frac{r^{\Delta}(t)}{r^{\sigma}(t)} w^{\sigma}(t)-r(t) q(\tau(t)) \tau^{\Delta}(t)-\alpha \frac{r(t)}{r^{2}(\sigma(t))} h^{\alpha}\left(t, t_{2} ; p\right)\left(\frac{x(t)}{x^{\Delta}(t)}\right)^{\alpha-1} w^{2}(\sigma(t)) .
\end{aligned}
$$

Using (12) in the above inequality, we get for $t \geq t_{3}>t_{2}, t_{3} \in \mathbb{T}$,

$$
\begin{aligned}
w^{\Delta}(t) \leq & \frac{r^{\Delta}(t)}{r^{\sigma}(t)} w^{\sigma}(t)-r(t) q(\tau(t)) \tau^{\Delta}(t)-\alpha \frac{r(t)}{r^{2}(\sigma(t))}\left(t-t_{2}\right)^{\alpha-1} h^{\alpha}\left(t, t_{2} ; p\right) w^{2}(\sigma(t)) \\
= & -r(t) q(\tau(t)) \tau^{\Delta}(t)+\frac{\left(r^{\Delta}(t)\right)^{2}}{4 \alpha r(t) h^{\alpha}\left(t, t_{0} ; p\right)\left(t-t_{0}\right)^{\alpha-1}} \\
& -\left[\sqrt{\left.\alpha \frac{r(t)}{r^{2}(\sigma(t))} h^{\alpha}\left(t, t_{2} ; p\right)\left(t-t_{2}\right)^{\alpha-1} w^{\sigma}(t)-\frac{r^{\Delta}(t)}{2 r^{\sigma}(t) \sqrt{\alpha \frac{r(t)}{r^{2}(\sigma(t))} h^{\alpha}\left(t, t_{2} ; p\right)\left(t-t_{2}\right)^{\alpha-1}}}\right]^{2}}\right. \\
\leq & -\left[r(t) q(\tau(t)) \tau^{\Delta}(t)-\frac{\left(r^{\Delta}(t)\right)^{2}}{4 \alpha r(t) h^{\alpha}\left(t, t_{0} ; p\right)\left(t-t_{0}\right)^{\alpha-1}}\right]
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 3.1, and hence omitted.
The following result is concerned with the oscillation of another special case of equation (1), namely

$$
\begin{equation*}
L_{4} x(t)+q(t) x^{\sigma}(t)=0 \tag{13}
\end{equation*}
$$

Theorem 3.4 Let $\alpha<1$. In addition to (2) we assume that

$$
\int^{\infty} q(\tau(t)) \tau^{\Delta}(t) \Delta t<\infty
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} h\left(s, t_{0} ; p\right) Q^{\frac{1}{\alpha}}(\sigma(s)) \Delta s=\infty, \quad t_{0} \in \mathbb{T} \tag{14}
\end{equation*}
$$

Then equation (13) is oscillatory.
Proof: Let $x(t)$ be an eventually positive solution of equation (13), say, $x(t)>0$ for $t \geq t_{0}$. We define

$$
w(t)=\frac{L_{3} x(\tau(t))}{x(t)}
$$

Similar to the proof in Theorem 3.1, we obtain

$$
\begin{equation*}
\left(\frac{L_{3} x(\tau(t))}{x(t)}\right)^{\Delta} \leq-q(\tau(t)) \tau^{\Delta}(t), t \geq t_{2} \tag{15}
\end{equation*}
$$

Integrating (15) from $\sigma(t)$ to $u$, we get

$$
\begin{equation*}
0<\frac{L_{3} x(\tau(u))}{x(u)} \leq \frac{L_{3} x(\tau(\sigma(t)))}{x(\sigma(t))}-\int_{\sigma(t)}^{u} q(\tau(s)) \tau^{\Delta}(s) \Delta s \tag{16}
\end{equation*}
$$

Letting $u \rightarrow \infty$ in (16), we obtain

$$
\begin{equation*}
\frac{L_{3} x(\tau(\sigma(t)))}{x(\sigma(t))} \geq Q(\sigma(t)) \tag{17}
\end{equation*}
$$

Using (8) in (17) and noting that $L_{3} x$ is decreasing, we find

$$
\left(\frac{x^{\Delta}(t)}{x^{\frac{1}{\alpha}}(\sigma(t))}\right)^{\alpha} \geq h^{\alpha}\left(t, t_{2} ; p\right) Q(\sigma(t)), t \geq t_{2}
$$

or

$$
\begin{equation*}
h\left(t, t_{2} ; p\right) Q^{\frac{1}{\alpha}}(\sigma(t)) \leq \frac{x^{\Delta}(t)}{x^{\frac{1}{\alpha}}(\sigma(t))}, t \geq t_{2} \tag{18}
\end{equation*}
$$

Integrating (18) from $t_{2}$ to $t$, we get

$$
\begin{equation*}
\int_{t_{2}}^{t} h\left(s, t_{2} ; p\right) Q^{\frac{1}{\alpha}}(\sigma(s)) \Delta s \leq \int_{t_{2}}^{t} \frac{x^{\Delta}(s)}{x^{\frac{1}{\alpha}}(\sigma(s))} \Delta s \tag{19}
\end{equation*}
$$

Taking limit of both sides of (19) as $t \rightarrow \infty$, we arrive at the desired contradiction by Lemma 2.4 (ii) and (14).

## 4 Oscillation Criteria for Delay Dynamic Equations

We consider the delay dynamic equation

$$
\begin{equation*}
L_{4} x(t)+q(t) f(x(\theta(t)))=0 \tag{20}
\end{equation*}
$$

where $\theta: \mathbb{T} \rightarrow \mathbb{T}$ is an increasing delay function satisfying $\lim _{t \rightarrow \infty} \theta(t)=\infty$ and $\theta(t) \leq t$ for all $t \in \mathbb{T}$ and we study the oscillation for delay dynamic equation (20). We first present some comparison criteria.

Lemma 4.1 Let (2) hold. If the inequality

$$
\begin{equation*}
L_{4} x(t)+q(t) f(x(\theta(t))) \leq 0 \tag{21}
\end{equation*}
$$

has an eventually positive (negative) solution, then the equation (20) also has an eventually positive (negative) solution.

Proof: Let $x(t)$ be an eventually positive solution of (21). There exists $t_{0} \in \mathbb{T}$ such that $x(t)>0$ for $t \geq t_{0}$ and $x(t)$ satisfies either (I) or (II) for $t \geq t_{0}$. Integrating (21) from $t \geq t_{0}$ to $u \geq t$ and letting $u \rightarrow \infty$, we have

$$
\begin{equation*}
L_{3} x(t) \geq \int_{t}^{\infty} q(s) f(x(\theta(s))) \Delta s \tag{22}
\end{equation*}
$$

Now, we need to distinguish the following two cases:
Case (I). $L_{i} x(t)>0$ for $t \geq t_{0}, i=0,1,2,3$. Integrating (22) from $t_{0}$ to $t \geq t_{0}$, we get

$$
L_{2} x(t) \geq \int_{t_{0}}^{t} \int_{s}^{\infty} q(u) f(x(\theta(u))) \Delta u \Delta s
$$

or

$$
x^{\Delta^{2}}(t) \geq\left(\frac{1}{p(t)} \int_{t_{0}}^{t} \int_{s}^{\infty} q(u) f(x(\theta(u))) \Delta u \Delta s\right)^{\frac{1}{\alpha}}
$$

and so,

$$
x(t) \geq \int_{t_{0}}^{t} \int_{t_{0}}^{s_{3}}\left(\frac{1}{p\left(s_{2}\right)} \int_{t_{0}}^{s_{2}} \int_{s_{1}}^{\infty} q(s) f(x(\theta(s))) \Delta s \Delta s_{1}\right)^{\frac{1}{\alpha}} \Delta s_{2} \Delta s_{3}
$$

Define

$$
\Phi(t, x(\theta(t))):=\int_{t_{0}}^{t} \int_{t_{0}}^{s_{3}}\left(\frac{1}{p\left(s_{2}\right)} \int_{t_{0}}^{s_{2}} \int_{s_{1}}^{\infty} q(s) f(x(\theta(s))) \Delta s \Delta s_{1}\right)^{\frac{1}{\alpha}} \Delta s_{2} \Delta s_{3}-c
$$

where $c=x\left(t_{0}\right)$. Now, we show that the existence of a positive solution to the equation

$$
y(t)=c+\Phi(t, y(\theta(t))) \text { for } t \geq t_{0} .
$$

In order to do this, we define the function sequence $\left\{y_{k}(t)\right\}, k=0,1, \ldots$, such that

$$
\begin{equation*}
y_{0}(t)=x(t), \quad y_{k+1}(t)=c+\Phi\left(t, y_{k}(\theta(t))\right) \text { for } t \geq t_{0} \tag{23}
\end{equation*}
$$

Then, one can easily see that $y_{k}(t)$ is well-defined and

$$
0 \leq y_{k}(t) \leq x(t), \quad c \leq y_{k+1}(t) \leq y_{k}(t)
$$

Thus, $y_{k}$ is positive and nonincreasing in $k$ for $t \geq t_{0}$. This means we may define $y(t)=$ $\lim _{k \rightarrow \infty} y_{k}(t)$. Since $0<y(t) \leq y_{k}(t) \leq x(t)$ for all $k \geq 0$ and

$$
\Phi\left(t, y_{k}(\theta(t))\right) \leq \Phi(t, x(\theta(t)))
$$

the convergence of $\left\{y_{k}(t)\right\}$ is uniform with respect to $t$. Now, taking the limit of both sides of (23), we have

$$
\begin{equation*}
y(t)=c+\Phi(t, y(\theta(t))) \text { for } t \geq t_{0} \tag{24}
\end{equation*}
$$

Finally, taking the delta derivative of (24) four times, we obtain

$$
L_{4} y(t)+q(t) f(y(\theta(t)))=0
$$

Case (II). $L_{i} x(t)>0, i=0,1,3$ and $L_{2} x(t)<0$ for $t \geq t_{0}$. Integrating (22) from $t \geq t_{0}$ to $u$ and letting $u \rightarrow \infty$, we have

$$
-x^{\Delta^{2}}(t) \geq\left(\frac{1}{p(t)} \int_{t}^{\infty} \int_{s}^{\infty} q(u) f(x(\theta(u))) \Delta u \Delta s\right)^{\frac{1}{\alpha}}
$$

Define

$$
\Psi(t, x(\theta(t))):=\int_{t_{0}}^{t} \int_{s_{3}}^{\infty}\left(\frac{1}{p\left(s_{2}\right)} \int_{s_{2}}^{\infty} \int_{s_{1}}^{\infty} q(s) f(x(\theta(s))) \Delta s \Delta s_{1}\right)^{\frac{1}{\alpha}} \Delta s_{2} \Delta s_{3}
$$

Then

$$
x(t) \geq c+\Psi(t, x(\theta(t))) \text { with } c=x\left(t_{0}\right)
$$

The rest of the proof is similar to that of Case (I) and hence omitted.

Theorem 4.2 Let (2) hold. If

$$
\begin{equation*}
x^{\Delta^{2}}(t)+\left(\frac{1}{p(t)} \int_{t}^{\infty} \int_{s}^{\infty} q(u) \Delta u\right)^{\frac{1}{\alpha}} f^{\frac{1}{\alpha}}(x(\sigma(t))=0 \tag{25}
\end{equation*}
$$

is oscillatory, then all bounded solutions of equation (1) are oscillatory.
Proof: Let $x(t)$ be a nonoscillatory bounded solution of equation (1), say, $x(t)>0$ for $t \geq t_{0}$, $t_{0} \in \mathbb{T}$. It is easy to check that $x(t)$ satisfies (II) for $t \geq t_{1} \geq t_{0}, t_{1} \in \mathbb{T}$. Integrating equation (1) from $t \geq t_{1}$ to $u$ and letting $u \rightarrow \infty$, we have

$$
L_{3} x(u)-L_{3} x(t)=-\int_{t}^{u} q(s) f\left(x^{\sigma}(s)\right) \Delta s
$$

and so

$$
\begin{equation*}
L_{3} x(t) \geq \int_{t}^{\infty} q(s) f\left(x^{\sigma}(s)\right) \Delta s \geq f\left(x^{\sigma}(t)\right) \int_{t}^{\infty} q(s) \Delta s, t \geq t_{1} \tag{26}
\end{equation*}
$$

Once again, integrating (26) from $t \geq t_{1}$ to $u$ and letting $u \rightarrow \infty$, we obtain

$$
-L_{2} x(t) \geq f\left(x^{\sigma}(t)\right) \int_{t}^{\infty}\left(\int_{s}^{\infty} q(v) \Delta v\right) \Delta s, t \geq t_{1}
$$

or

$$
x^{\Delta^{2}}(t)+\left(\frac{1}{p(t)} \int_{t}^{\infty}\left(\int_{s}^{\infty} q(v) \Delta v\right) \Delta s\right)^{\frac{1}{\alpha}} f^{\frac{1}{\alpha}}\left(x^{\sigma}(t)\right) \leq 0, t \geq t_{1}
$$

Similar to the proof of Case (II) in Lemma 4.1, we can show that (25) has an eventually positive solution, which contradicts the hypothesis and completes the proof.

By the similar method of proof in Lemma 4.1, we can show that the following comparison result.

Lemma 4.3 Let (2) hold. If

$$
x^{\Delta}(t)+q(t) f(x(\theta(t)) \leq 0
$$

has an eventually positive (negative) solution, then

$$
x^{\Delta}(t)+q(t) f(x(\theta(t))=0
$$

also has an eventually positive (negative) solution.
Now we establish some oscillation criteria for equation (20).
Theorem 4.4 Let (2) hold and assume that $f$ satisfies

$$
\begin{equation*}
-f(-x y) \geq f(x y) \geq f(x) f(y) \text { for } x y>0 \tag{27}
\end{equation*}
$$

If

$$
\begin{equation*}
y^{\Delta}(t)+q(t) f\left(H\left(\theta(t), t_{0} ; p\right)\right) f\left(y^{\frac{1}{\alpha}}(\tau(\theta(t)))\right)=0 \tag{28}
\end{equation*}
$$

is oscillatory, then equation (20) is oscillatory.
Proof: Let $x(t)$ be a nonoscillatory solution of equation (20), say, $x(t)>0$ for $t \geq t_{0}, t_{0} \in \mathbb{T}$, and $x(t)$ satisfies (I) or (II). By Lemma 2.1, there exists $t_{1} \geq t_{0}$ so large that

$$
\begin{equation*}
x(\theta(t)) \geq H\left(\theta(t), t_{0} ; p\right) L_{3}^{\frac{1}{\alpha}} x(\tau(\theta(t))) \text { for } t \geq t_{1}, t_{1} \in \mathbb{T} \tag{29}
\end{equation*}
$$

Using (29) and (27) in (20), we have

$$
\left.-\left(L_{3} x(t)\right)^{\Delta} \geq q(t) f\left(H(\theta(t)), t_{0} ; p\right)\right) f\left(L_{3}^{\frac{1}{\alpha}} x(\tau(\theta(t)))\right), t \geq t_{1}
$$

Substituting $y(t)$ for $L_{3} x(t), t \geq t_{1}$, we get

$$
\left.-y^{\Delta}(t) \geq q(t) f\left(H(\theta(t)), t_{0} ; p\right)\right) f\left(y^{\frac{1}{\alpha}}(\tau(\theta(t)))\right), t \geq t_{1}
$$

Note that $x(t)$ satisfies (I) or (II) implies that $y(t)>0$ for $t \geq t_{1}$. So (28) has an eventually positive solution by Lemma 4.3, which contradicts with the hypothesis and completes the proof.

We now present the following result for the oscillation of all bounded solutions of equation (20).

Theorem 4.5 Let (2) hold. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{k}^{\infty}\left(\frac{1}{p(\nu)} \int_{\nu}^{\infty} \int_{\tau}^{\infty} q(s) \Delta s \Delta \tau\right)^{\frac{1}{\alpha}} \Delta \nu \Delta k=\infty \tag{30}
\end{equation*}
$$

then all bounded solutions of equation (20) are oscillatory.

Proof: Let $x(t)$ be a nonoscillatory bounded solutions of equation (20), say, $x(t)>0$ for $t \geq t_{0}$. Clearly, $x(t)$ satisfies (II) for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Now, there exist a constant $c>0$ and an $t_{2} \geq t_{1}, t_{2} \in \mathbb{T}$ such that

$$
\begin{equation*}
\frac{c}{2} \leq x(\theta(t)) \leq c \text { for } t \geq t_{2} \tag{31}
\end{equation*}
$$

Using (31), we have

$$
\begin{equation*}
L_{4} x(t)+q(t) f\left(\frac{c}{2}\right) \leq 0 \text { for } t \geq t_{2} \tag{32}
\end{equation*}
$$

Integrating (32) from $t \geq t_{2}$ to $u \geq t$ and letting $u \rightarrow \infty$, we have

$$
\begin{equation*}
L_{3} x(t) \geq f\left(\frac{c}{2}\right) \int_{t}^{\infty} q(s) \Delta s \tag{33}
\end{equation*}
$$

Once again, integrating (33) from $t \geq t_{2}$ to $u \geq t$ and letting $u \rightarrow \infty$, we get

$$
-x^{\Delta^{2}}(t) \geq f^{\frac{1}{\alpha}}\left(\frac{c}{2}\right)\left(\frac{1}{p(t)} \int_{t}^{\infty} \int_{\tau}^{\infty} q(s) \Delta s \Delta \tau\right)^{\frac{1}{\alpha}}
$$

Therefore, we find

$$
x(t) \geq x\left(t_{1}\right)+f^{\frac{1}{\alpha}}\left(\frac{c}{2}\right) \int_{t_{2}}^{\infty} \int_{k}^{\infty}\left(\frac{1}{p(\nu)} \int_{\nu}^{\infty} \int_{\tau}^{\infty} q(s) \Delta s \Delta \tau\right)^{\frac{1}{\alpha}} \Delta \nu \Delta k \rightarrow \infty \text { as } t \rightarrow \infty
$$

which contradicts with (30) and completes the proof.
The following theorems are concerned with a necessary and sufficient condition for the oscillation of all bounded and unbounded solutions of

$$
\begin{equation*}
L_{4} x(t)+q(t) x^{\gamma}(\theta(t))=0 \tag{34}
\end{equation*}
$$

where $\gamma$ is the ratio of two positive odd integers.
Theorem 4.6 Let $\gamma>\alpha$ and condition (2) hold. Then all bounded solutions of equation (34) are oscillatory if and only if (30) holds.

Proof: Let $x(t)$ be a nonoscillatory bounded solution of equation (34), say $x(t)>0$ for $t \geq t_{0}$, $t_{0} \in \mathbb{T}$. Clearly, $x(t)$ satisfies (II) for $t \geq t_{1}$ for some $t_{1} \geq t_{0}, t_{1} \in \mathbb{T}$. The proof of the "if" part is an immediate corollary of Theorem 4.5 and hence omitted.

Now, we prove the "only if" part of the theorem. Let $c>0$ be a given arbitrary constant, and choose a large $T \geq t_{1}, T \in \mathbb{T}$ such that

$$
\int_{T}^{\infty} \int_{k}^{\infty}\left(\frac{1}{p(\nu)} \int_{\nu}^{\infty} \int_{\tau}^{\infty} q(s) \Delta s \Delta \tau\right)^{\frac{1}{\alpha}} \Delta \nu \Delta k \leq \frac{1}{2} c^{1-\frac{\gamma}{\alpha}}
$$

We introduce the Banach space $\mathcal{A}$ of all bounded real-valued functions defined on $[T, \infty) \mathbb{T}$ with the norm $\|x\|=\sup _{t \in[T, \infty) \mathbb{T}}|x(t)|$. We define a bounded convex and closed subset $\mathcal{B}$ of $\mathcal{A}$ as

$$
\mathcal{B}=\left\{x \in \mathcal{A}: \frac{c}{2} \leq x(\theta(t)) \leq c, t \geq T\right\}
$$

Next, let $\mathcal{F}$ be a mapping defined on $\mathcal{B}$ by

$$
(\mathcal{F} x)(t)=c-\int_{T}^{t} \int_{k}^{\infty}\left(\frac{1}{p(\nu)} \int_{\nu}^{\infty} \int_{\tau}^{\infty} q(s) x^{\gamma}(\theta(s)) \Delta s \Delta \tau\right)^{\frac{1}{\alpha}} \Delta \nu \Delta k
$$

It is now easy to show that $\mathcal{F}$ maps $\mathcal{B}$ into itself and $\mathcal{F}$ is a continuous mapping. Also $\mathcal{F}(\mathcal{B})$ is relatively compact in $\mathcal{A}$. Therefore, by Schauder fixed point theorem, there exists $x \in \mathcal{B}$ such that $x=\mathcal{F} x$. It is clear that the fixed point $x=x(t)$ gives a positive solution of (34) for $t \geq T$.

Theorem 4.7 Let $\gamma<\alpha$ and (2) hold. Then all unbounded solutions of (34) are oscillatory if and only if for all large $t \geq t_{0}, t_{0} \in \mathbb{T}$,

$$
\begin{equation*}
\int^{\infty} q(t) H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) \Delta t=\infty \tag{35}
\end{equation*}
$$

where

$$
H_{1}\left(t, t_{0} ; p\right)=\int_{t_{0}}^{t} \int_{t_{0}}^{u}\left(\frac{s-t_{0}}{p(s)}\right)^{\frac{1}{\alpha}} \Delta s \Delta u
$$

Proof: Let $x(t)$ be an unbounded nonoscillatory solution of equation (34), say $x(t)>0$ for $t \geq t_{0}, t_{0} \in \mathbb{T}$. It is easy to see that $x(t)$ satisfies (I), and so,

$$
x(t) \geq H_{1}\left(t, t_{0} ; p\right) L_{3}^{\frac{1}{\alpha}} x(t), t \geq t_{1} \geq t_{0}, t_{1} \in \mathbb{T}
$$

Furthermore, we have

$$
\begin{equation*}
x^{\gamma}(\theta(t)) \geq H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) L_{3}^{\frac{\gamma}{\alpha}} x(\theta(t)) \geq H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) L_{3}^{\frac{\gamma}{\alpha}} x(t) \tag{36}
\end{equation*}
$$

Using (36) in (34), we obtain

$$
-L_{4} x(t) \geq q(t) H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) L_{3}^{\frac{\gamma}{\alpha}} x(t)
$$

Set $y(t)=L_{3} x(t)$. Then

$$
\begin{equation*}
y^{\Delta}(t)+q(t) H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) y^{\frac{\gamma}{\alpha}}(t) \leq 0 \tag{37}
\end{equation*}
$$

Dividing both sides of (37) by $y^{\frac{\gamma}{\alpha}}(t)$ and integrating from $t_{1}$ to $u$

$$
\int_{t_{1}}^{u} q(t) H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) \Delta t \leq-\int_{t_{1}}^{u} \frac{y^{\Delta}(t)}{y^{\frac{\gamma}{\alpha}}(t)} \Delta t
$$

By Lemma 2.4 (i) and as $u \rightarrow \infty$, we conclude that

$$
\int_{t_{1}}^{\infty} q(t) H_{1}^{\gamma}\left(\theta(t), t_{0} ; p\right) \Delta t \leq \int_{t_{1}}^{\infty} \frac{-y^{\Delta}(t)}{y^{\frac{\gamma}{\alpha}}(t)} \Delta t<\infty
$$

which contradicts with (35).

To prove the "only if" part it suffices to assume that

$$
\int^{\infty} q(s) H_{1}^{\gamma}\left(\theta(s), t_{0} ; p\right) \Delta s<\infty
$$

and show the existence of a nonoscillatory solution of (34). Let $c>0$ be an arbitrary constant and choose $T>t_{1} \geq t_{0}, T \in \mathbb{T}$ sufficiently large so that

$$
\int_{T}^{\infty} q(s) H_{1}^{\gamma}\left(\theta(s), t_{0} ; p\right) \Delta s<c^{1-\frac{\alpha}{\gamma}}
$$

Let $X$ be the subset of all real-valued functions set $X_{1}$ defined on $[T, \infty) \mathbb{T}$ by

$$
X=\left\{x: c_{1} H_{1}(t, T ; p) \leq x(t) \leq c_{2} H_{1}(t, T ; p), t \geq T\right\}
$$

where $c_{1}=\left(\frac{c}{2}\right)^{\frac{1}{\alpha}}$ and $c_{2}=(2 c)^{\frac{1}{\alpha}}$. Clearly, $X$ is a closed, convex and compact subset of $X_{1}$. Let $S$ be a mapping defined on $X$ as follows: For $x \in X$,

$$
\begin{equation*}
(S x)(t)=\int_{T}^{t} \int_{T}^{k}\left(\frac{1}{p(\nu)}\left[c(\nu-T)+\int_{T}^{\nu} \int_{\tau}^{\infty} q(s) x^{\gamma}(\theta(s)) \Delta s \Delta \tau\right]\right)^{\frac{1}{\alpha}} \Delta \nu \Delta k \text { for } t \geq T \tag{38}
\end{equation*}
$$

It is easy to show that $S$ is continuous and maps $X$ into itself and relatively compact in $X_{1}$. Therefore, by Schauder fixed point theorem, $S$ has a fixed point $x$ in $X$ which satisfies

$$
\begin{equation*}
x(t)=\int_{T}^{t} \int_{T}^{k}\left(\frac{1}{p(\nu)}\left[c(\nu-T)+\int_{T}^{\nu} \int_{\tau}^{\infty} q(s) x^{\gamma}(\theta(s)) \Delta s \Delta \tau\right]\right)^{\frac{1}{\alpha}} \Delta \nu \Delta k \text { for } t \geq T \tag{39}
\end{equation*}
$$

Taking the delta derivative four times on (39), we see that $x=x(t)$ is a positive solution of (34) for $t \geq T$.

## References

[1] R. P. Agarwal, S. R. Grace and J. V. Manojlovic, Oscillation criteria for certain fourth order nonlinear functional differential equations, Math. Comput. Modelling, 44 (2006), 163-187.
[2] R. P. Agarwal, M. Bohner, S. R. Grace and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, 2005.
[3] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000.
[4] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers, Dordrecht, 2003.
[5] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor 8 Francis Ltd., London, 2003.
[6] E. Akın-Bohner, Z. Dǒslá, B. Lawrence, Oscillatory properties for three-dimensional dynamic systems. Nonlinear Anal. 69 (2008), 483-494.
[7] M. Bohner, S.R. Grace, and S. Sun, Oscillation of fourth order dynamic equations, 2010, submitted.
[8] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001.
[9] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[10] M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 34 (4)(2004), 1239-1254.
[11] L. Erbe, A. Peterson, P. Řehák, Comparison theorems for linear dynamic equations on time scales, J. Math. Anal. Appl., 275 (2002), 418-438.
[12] S. R. Grace, M. Bohner and R. P. Agarwal, On the oscillation of second order half-linear dynamic equations, J. Difference Equ. Appl., 15 (5)(2009), 451-460.
[13] Zhenlai Han, Tongxing Li, Shurong Sun, Chenghui Zhang, Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales, Advances in Difference Equations, Volume 2009, Article ID 756171, 13 pages, doi:10.1155/2009/756171.
[14] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Second Edition, Cambridge Univer- sity Press, Cambridge, 1988.
[15] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56.
[16] S. Sun, Z. Han and C. Zhang, Oscillation of second-order delay dynamic equations on time scales, J. Appl. Math. Comput., 30 (2009), 459-468.

