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Abstract

Some oscillatory criteria for fourth order difference and differential equations are gen-

eralized to arbitrary time scales.
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1 Introduction

This paper is concerned with the oscillatory behavior of fourth-order nonlinear dynamic
equations

(p(t)(x∆2

)α)∆
2

(t) + q(t)f(xσ)(t) = 0, t ∈ T (1)
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where α is the ratio of two positive odd integers, p, q ∈ Crd(T,R
+
), and f ∈ C(R,R) such

that xf(x) > 0 and f ′(x) ≥ 0 for x 6= 0.
A time scale T is a nonempty closed subset of real numbers. The delta-derivative f∆

for a function f defined on T turns out to be f∆ = f ′ (the usual derivative) if T = R and
f∆ = ∆f (the usual forward difference operator) if T = Z. Here σ : T 7→ T is the forward
jump operator which gives the next point in T. The study of dynamic equations on time
scales is a fairly new topic, and work in this area is rapidly growing. It is introduced well
in the fundamental texts by M. Bohner and A. Peterson in [8, 9]. For recent contributions
concerning the oscillation of differential, difference and dynamic equations, see the books
[2, 3, 4, 5, 8, 9] and the papers [1, 10, 11, 12, 13, 15, 16].

The main purpose of this paper is to pursue a systematic study for the oscillation of
equation (1). For that reason, we assume that

∫

∞

p−
1
α (t)∆t = ∞ (2)

and there exists a strictly increasing function β : T → T such that β2(T) := β(β(T)) is a
time scale, t < β(t) for all t ∈ T and β2 is delta-differentiable. In Section 2, we prove a crucial
lemma and give some preliminary results. In Section 3, we obtain the oscillation criteria for
(1) as well as for special cases of (1) depending on α ≥ 1 and α < 1. Finally, we establish the
oscillation criteria for some delay equations in the last section.

Throughout we assume that T is an unbounded time scale. For convenience of notation,
we let [t0,∞)

T
= [t0,∞) ∩ T, t0 ∈ T, and x∆2

= x∆∆. By C(M, N) (Crd(M, N)) we mean

the set of all continuous (right-dense continuous) functions defined on the set M to the set
N . We denote τ = β2. We introduce the operators Li, i = 0, 1, 2, 3, 4, as follows:

L0x = x, L1x = (L0x)∆, L2x = p{(L1x)∆}α, L3x = (L2x)∆, L4x = (L3x)∆. (3)

We recall that a solution of equation (1) is said to be oscillatory on [t0,∞)
T

in case it is
neither eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory.
Equation (1) is said to be oscillatory in case all of its solutions are oscillatory.

2 Preliminaries

In this section, we first discuss possible sign conditions for the operators defined in (3) in
case a solution of (1) is eventually positive. Then we obtain a crucial lemma. We finish this
section with some preliminary results.

If x is an eventually positive solution of (1), then L4x(t) < 0 eventually. Since (2) holds,
it follows that Lix(t), i = 1, 2, 3, are eventually of one sign. There are eight different sign
combinations for these functions. It is easy to show that it is not possible that Lix(t) > 0,
Li+1x(t) < 0, Li+2x(t) < 0 and Lix(t) < 0, Li+1x(t) > 0, Li+2x(t) > 0 for i ∈ {0, 1, 2}, see
[7]. There are only two possibilities left, namely

(I) L0x(t) > 0, L1x(t) > 0, L2x(t) > 0, L3x(t) > 0, and L4x(t) < 0 for t ≥ t0;

(II) L0x(t) > 0, L1x(t) > 0, L2x(t) < 0, L3x(t) > 0, and L4x(t) < 0 for t ≥ t0,
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where t0 is sufficiently large enough.

Case (I). Suppose L0x(t) > 0, L1x(t) > 0, L2x(t) > 0, L3x(t) > 0, and L4x(t) < 0 for t ≥ t0.
Since L3x(t) > 0 is decreasing for t ≥ t0, we get

L2x(t) − L2x(t0) =

∫ t

t0

L3x(s)∆s,

hence

p(t){(L1x)∆}α(t) ≥ (t − t0)L3x(t),

thus

x∆2

(t) ≥

(

t − t0

p(t)

)
1
α

L
1
α

3 x(t) for t ≥ t0. (4)

Integrating (4) from t0 to t, using (I) and the decreasing property of L3x(t), t ≥ t0, we obtain

x∆(t) ≥ L
1
α

3 x(t)

∫ t

t0

(

s − t0

p(s)

)
1
α

∆s for t ≥ t0,

and repeating the same process yields

x(t) ≥ L
1
α

3 x(t)

∫ t

t0

(

∫ u

t0

(

s − t0

p(s)

)
1
α

∆s

)

∆u for t ≥ t0.

Case (II). Suppose L0x(t) > 0, L1x(t) > 0, L2x(t) < 0, L3x(t) > 0, and L4x(t) < 0 for
t ≥ t0. From supT = ∞, we see that there exists an increasing function β : T → T such that
t < β(t) for all t ∈ T. Then note that L3x(t) > 0 is decreasing and L2x(t) < 0 for t ≥ t0.
From

L2x(β(t)) − L2x(t) =

∫ β(t)

t

L3x(s)∆s,

we get that

−L2x(t) ≥ (β(t) − t)L3x(β(t)),

which can be rewritten as

−x∆2

(t) ≥

(

β(t) − t

p(t)

)
1
α

L
1
α

3 x(β(t)). (5)

Integrating (5) again from t to β(t), we obtain

x∆(t) ≥ L
1
α

3 x(β2(t))

∫ β(t)

t

(

β(s) − s

p(s)

)
1
α

∆s,

and so

x(t) ≥ L
1
α

3 x(β2(t))

∫ t

t0

∫ β(s)

s

(

β(u) − u

p(u)

)
1
α

∆u∆s.
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For t ≥ t0, we set

h(t, t0; p) := min

{

∫ t

t0

(

s − t0

p(s)

)
1
α

∆s,

∫ β(t)

t

(

β(s) − s

p(s)

)
1
α

∆s

}

and

H(t, t0; p) :=

∫ t

t0

h(s, t0; p(s))∆s.

Combining these inequalities, we obtain the following crucial lemma.

Lemma 2.1 Let x(t) be a positive solution of (1) for t ≥ t0. Then, for all t ≥ t0,

x∆(t) ≥ h(t, t0; p)L
1
α

3 x(τ(t))

and

x(t) ≥ H(t, t0; p)L
1
α

3 x(τ(t)).

We also need the following lemma.

Lemma 2.2 [14] If X and Y are nonnegative, then

Xλ − λXY λ−1 + (λ − 1)Y λ ≥ 0, λ > 1,

where equality holds if and only if X = Y .

The following chain rule is extracted from [13] and plays an important role in this paper.

Lemma 2.3 Assume that τ : T → R is strictly increasing and T̃ := τ(T) ⊂ T is a time

scale such that τ ◦ σ = σ ◦ τ . Let x : T̃ → R. If τ∆(t) and x∆(τ(t)) exist for t ∈ T
κ
, then

(x ◦ τ)∆(t) exists, and (x ◦ τ)∆(t) = x∆(τ(t))τ∆(t).

From Remarks 4.1 and 4.2 in [6], we have the following result.

Lemma 2.4 Assume x ∈ Crd([t0,∞)
T

,R).

(i) If x(t) > 0, x∆(t) ≤ 0 on [t0,∞)
T

and λ < 1, then

∫

∞

t

−x∆(s)

xλ(s)
∆s < ∞, t ∈ [t0,∞)

T
;

(ii) If x(t) > 0, x∆(t) ≥ 0 on [t0,∞)
T

and λ > 1, then

∫

∞

t

x∆(s)

(xσ(s))λ
∆s < ∞, t ∈ [t0,∞)

T
.
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3 Oscillation Criteria for (1)

Throughout this paper, we assume τ ◦ σ = σ ◦ τ . In what follows we assume that

f
1
α
−1(u)g(u, v) ≥ k > 0 for u, v 6= 0, (6)

where k is a constant and

g(u, v) =

∫ 1

0

f ′(hu + (1 − h)v)dh. (7)

Theorem 3.1 Assume that (2), (6) and (7) hold, and there exists a function r : [t0,∞)
T

→

R
+

such that

lim sup
t→∞

∫ t

t0

[

r(s)q(τ(s))τ∆(s) −

(

1

kα

αα

(1 + α)1+α

(r∆(t))1+α

(r(t)h(t, t0; p))α

)]

∆s = ∞,

where h(t, t0; p) is defined as in Lemma 2.1. Then equation (1) is oscillatory.

Proof: Let x be an eventually positive solution of (1), say x(t) > 0 for all t ≥ t0, t0 ∈ T. Then
from (1), we see that L4x(t) < 0 for all t ≥ t0 and hence Lix(t), i = 1, 2, 3, are eventually of
one sign for all t ≥ t0. From the earlier argument in Section 2, L3x(t) > 0 is decreasing and
L1x(t) > 0 for all t ≥ t1 ≥ t0, t1 ∈ T. By Lemma 2.1, there exists t2 ≥ t1, t2 ∈ T such that

x∆(t) ≥ h(t, t2; p)L
1
α

3 x(τ(t)) for t ≥ t2. (8)

Define

w(t) = r(t)
L3x(τ(t))

f(x(t))
for t ≥ t2.

Then by Lemma 2.3 and [8, Theorem 1.90], for t ≥ t0, we have

w∆(t) = r∆(t)
L3x(τ(σ(t)))

f(x(σ(t)))
+ r(t)

[L3x(τ(t))]∆f(x(t)) − L3x(τ(t))[f(x(t))]∆

f(x(t))f(x(σ(t)))

= r∆(t)
wσ(t)

rσ(t)
− r(t)

q(τ(t))f(xσ(τ(t)))τ∆(t)f(x(t))

f(x(t))f(x(σ(t)))

−r(t)L3x(τ(t))
x∆(t)

∫ 1

0 f ′[(1 − h)x(t) + hxσ(t)]dh

f(x(t))f(x(σ(t)))

≤ r∆(t)
wσ(t)

rσ(t)
− r(t)q(τ(t))τ∆(t) − r(t)L3x(τ(t))x∆(t)

g(xσ(t), x(t))

f(x(t))f(x(σ(t)))

≤ r∆(t)
wσ(t)

rσ(t)
− r(t)q(τ(t))τ∆(t) − kr(t)L3x(τ(t))

x∆(t)

f1+ 1
α (x(σ(t)))

≤ r∆(t)
wσ(t)

rσ(t)
− r(t)q(τ(t))τ∆(t) − kr(t)L

1+ 1
α

3 x(τ(t))h(t, t2; p)
1

f1+ 1
α (x(σ(t)))

≤ r∆(t)
wσ(t)

rσ(t)
− r(t)q(τ(t))τ∆(t) − kr(t)h(t, t2; p)

w1+ 1
α (σ(t))

r1+ 1
α (x(σ(t)))

. (9)
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Set

X = [kr(t)h(t, t2; p)]
α

α+1
wσ(t)

rσ(t)
, λ =

α + 1

α
> 1

and

Y =

(

α

α + 1

)α(
r∆(t)

rσ(t)

)α
{

[kr(t)h(t, t2; p)]−
α

α+1 rσ(t)
}α

in Lemma 2.2 to conclude that for t ≥ t3 > t2, t3 ∈ T

r∆(t)
wσ(t)

rσ(t)
− kr(t)h(t, t2; p)

w1+ 1
α (σ(t))

r1+ 1
α (σ(t))

≤
1

kα

αα

(1 + α)1+α

(r∆(t))1+α

(r(t)h(t, t2; p))α
,

and so

w∆(t) ≤ −r(t)q(τ(t))τ∆(t) +
1

kα

αα

(1 + α)1+α

(r∆(t))1+α

(r(t)h(t, t2; p))α
, t ≥ t3. (10)

Integrating both of sides of (10) from t3 to t ≥ t3, we obtain

w(t)−w(t3) ≤ −

∫ t

t3

[

r(s)q(τ(s))τ∆(s) −

(

1

kα

αα

(1 + α)1+α

(r∆(s))1+α

(r(s)h(s, t2; p))α

)]

∆s → −∞ as t → ∞,

which contradicts the fact that w(t) > 0 for t ≥ t2. 2

Now let

Q(t) :=

∫

∞

t

q(τ(s))τ∆(s)∆s and Q∗(t) := r(t)Q(t).

For the next three results, we obtain the oscillation criteria for (1) and special cases of (1)
depending on α.

Theorem 3.2 Let 0 < α ≤ 1 and assume that (2), (6) and (7) hold. If there exists a function

r : [t0,∞)
T

→ R
+

such that Q∗(t) > 0 and

lim sup
t→∞

∫ t

t0

[

p(s)q(τ(s))τ∆(s) −
1

4k

(r∆(s))2Q1− 1
α (σ(s))

r(s)h(s, t0; p)

]

∆s = ∞,

where h(t, t0; p) is defined as in Lemma 2.1, then equation (1) is oscillatory.

Proof: Let x be a nonoscillatory solution of equation (1), say x(t) > 0 for t ≥ t0, t0 ∈ T.
Define

y(t) =
L3x(τ(t))

f(x(t))
for t ≥ t0.

Then, similar to the proof of Theorem 3.1, we have y∆(t) ≤ −q(τ(t))τ∆(t), and so y(t) ≥ Q(t)
for t ≥ t0. Next, we define

w(t) = r(t)
L3x(τ(t))

f(x(t))
for t ≥ t0.
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Then w(t) ≥ r(t)Q(t) = Q∗(t), t ≥ t0. Proceeding as in the proof of Theorem 3.1, we obtain
(9) for t ≥ t2, t2 ∈ T. Now, for t ≥ t3, t3 ∈ T, t3 ≥ t2 we obtain

w∆(t) ≤ r∆(t)
wσ(t)

rσ(t)
− r(t)q(τ(t))τ∆(t) − kr(t)h(t, t2; p)

w1+ 1
α (σ(t))

r1+ 1
α (x(σ(t)))

≤ r∆(t)
wσ(t)

rσ(t)
− r(t)q(τ(t))τ∆(t) − kr(t)h(t, t2; p)r−1− 1

α (σ(t))(Q∗)
1
α
−1(σ(t))w2(σ(t)

= −r(t)q(τ(t))τ∆(t) +
1

4k

(r∆(t))2Q1− 1
α (σ(t))

r(t)h(t, t2; p)

−





√

kr(t)r−2(σ(t))h(t, t2; p)Q
1
α
−1(σ(t))wσ(t) −

r∆(t)

2rσ(t)

√

kr(t)r−2(σ(t))h(t, t2; p)Q
1
α
−1(σ(t))





2

≤ −r(t)q(τ(t))τ∆(t) +
1

4k

(r∆(t))2Q1− 1
α (σ(t))

r(t)h(t, t2; p)
.

The rest of the proof is similar to that of Theorem 3.1 and hence omitted. 2

The following result is concerned with the oscillation of a special case of equation (1),
namely, the equation

L4(x(t)) + q(t)xα(σ(t)) = 0. (11)

Theorem 3.3 Let α ≥ 1 and assume that (2) holds. If there exists a function r : [t0,∞)
T

→

R
+

such that

lim sup
t→∞

∫ t

t0

[

p(s)q(τ(s))τ∆(s) −
(r∆(t))2

4αr(t)hα(t, t0; p)(t − t0)α−1

]

∆s = ∞,

where h(t, t0; p) is defined as in Lemma 2.1, then all bounded solutions of equation (11) are
oscillatory.

Proof: Let x(t) be an eventually bounded positive solution of equation (11). It is easy to see
that x(t) satisfies (II). Proceeding as in the proof of Theorem 3.1, we obtain (8) for t ≥ t2,
t2 ∈ T, and we can easily see that

x(t) ≥ (t − t2)x
∆(t), t ≥ t2. (12)

Define

w(t) = r(t)
L3(x(τ(t)))

xα(t)
, t ≥ t2.
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By Lemma 2.3, we can show that [xα(t)]∆ ≥ αx∆(t)xα−1(t). Then from (8), for t ≥ t2, we
have

w∆(t) = r∆(t)
L3x(τ(σ(t)))

xα(σ(t))
+ r(t)

xα(t)(L3x(τ(t)))∆ − L3x(τ(t))(xα(t))∆

xα(t)xα(σ(t))

≤
r∆(t)

rσ(t)
wσ(t) − r(t)q(τ(t))τ∆(t) − r(t)L3x(τ(t))

(xα(t))∆

xα(t)xα(σ(t))

≤
r∆(t)

rσ(t)
wσ(t) − r(t)q(τ(t))τ∆(t) − αr(t)L3x(τ(t))(x∆(t))α(x∆(t))1−α xα−1(t)

(xα(σ(t)))2

≤
r∆(t)

rσ(t)
wσ(t) − r(t)q(τ(t))τ∆(t) − α

r(t)

r2(σ(t))
hα(t, t2; p)

(

x(t)

x∆(t)

)α−1

w2(σ(t)).

Using (12) in the above inequality, we get for t ≥ t3 > t2, t3 ∈ T,

w∆(t) ≤
r∆(t)

rσ(t)
wσ(t) − r(t)q(τ(t))τ∆(t) − α

r(t)

r2(σ(t))
(t − t2)

α−1hα(t, t2; p)w2(σ(t))

= −r(t)q(τ(t))τ∆(t) +
(r∆(t))2

4αr(t)hα(t, t0; p)(t − t0)α−1

−





√

α
r(t)

r2(σ(t))
hα(t, t2; p)(t − t2)α−1wσ(t) −

r∆(t)

2rσ(t)
√

α
r(t)

r2(σ(t))h
α(t, t2; p)(t − t2)α−1





2

≤ −

[

r(t)q(τ(t))τ∆(t) −
(r∆(t))2

4αr(t)hα(t, t0; p)(t − t0)α−1

]

.

The rest of the proof is similar to that of Theorem 3.1, and hence omitted. 2

The following result is concerned with the oscillation of another special case of equation
(1), namely

L4x(t) + q(t)xσ(t) = 0 (13)

Theorem 3.4 Let α < 1. In addition to (2) we assume that

∫

∞

q(τ(t))τ∆(t)∆t < ∞.

and

lim
t→∞

∫ t

t0

h(s, t0; p)Q
1
α (σ(s))∆s = ∞, t0 ∈ T. (14)

Then equation (13) is oscillatory.

Proof: Let x(t) be an eventually positive solution of equation (13), say, x(t) > 0 for t ≥ t0.
We define

w(t) =
L3x(τ(t))

x(t)
.
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Similar to the proof in Theorem 3.1, we obtain

(

L3x(τ(t))

x(t)

)∆

≤ −q(τ(t))τ∆(t), t ≥ t2. (15)

Integrating (15) from σ(t) to u, we get

0 <
L3x(τ(u))

x(u)
≤

L3x(τ(σ(t)))

x(σ(t))
−

∫ u

σ(t)

q(τ(s))τ∆(s)∆s. (16)

Letting u → ∞ in (16), we obtain

L3x(τ(σ(t)))

x(σ(t))
≥ Q(σ(t)). (17)

Using (8) in (17) and noting that L3x is decreasing, we find

(

x∆(t)

x
1
α (σ(t))

)α

≥ hα(t, t2; p)Q(σ(t)), t ≥ t2

or

h(t, t2; p)Q
1
α (σ(t)) ≤

x∆(t)

x
1
α (σ(t))

, t ≥ t2 (18)

Integrating (18) from t2 to t, we get

∫ t

t2

h(s, t2; p)Q
1
α (σ(s))∆s ≤

∫ t

t2

x∆(s)

x
1
α (σ(s))

∆s. (19)

Taking limit of both sides of (19) as t → ∞, we arrive at the desired contradiction by Lemma
2.4 (ii) and (14). 2

4 Oscillation Criteria for Delay Dynamic Equations

We consider the delay dynamic equation

L4x(t) + q(t)f(x(θ(t))) = 0, (20)

where θ : T → T is an increasing delay function satisfying lim
t→∞

θ(t) = ∞ and θ(t) ≤ t for all

t ∈ T and we study the oscillation for delay dynamic equation (20). We first present some
comparison criteria.

Lemma 4.1 Let (2) hold. If the inequality

L4x(t) + q(t)f(x(θ(t))) ≤ 0 (21)

has an eventually positive (negative) solution, then the equation (20) also has an eventually
positive (negative) solution.
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Proof: Let x(t) be an eventually positive solution of (21). There exists t0 ∈ T such that
x(t) > 0 for t ≥ t0 and x(t) satisfies either (I) or (II) for t ≥ t0. Integrating (21) from t ≥ t0
to u ≥ t and letting u → ∞, we have

L3x(t) ≥

∫

∞

t

q(s)f(x(θ(s)))∆s. (22)

Now, we need to distinguish the following two cases:

Case (I). Lix(t) > 0 for t ≥ t0, i = 0, 1, 2, 3. Integrating (22) from t0 to t ≥ t0, we get

L2x(t) ≥

∫ t

t0

∫

∞

s

q(u)f(x(θ(u)))∆u∆s

or

x∆2

(t) ≥

(

1

p(t)

∫ t

t0

∫

∞

s

q(u)f(x(θ(u)))∆u∆s

)

1
α

and so,

x(t) ≥

∫ t

t0

∫ s3

t0

(

1

p(s2)

∫ s2

t0

∫

∞

s1

q(s)f(x(θ(s)))∆s∆s1

)
1
α

∆s2∆s3.

Define

Φ(t, x(θ(t))) :=

∫ t

t0

∫ s3

t0

(

1

p(s2)

∫ s2

t0

∫

∞

s1

q(s)f(x(θ(s)))∆s∆s1

)
1
α

∆s2∆s3 − c,

where c = x(t0). Now, we show that the existence of a positive solution to the equation

y(t) = c + Φ(t, y(θ(t))) for t ≥ t0.

In order to do this, we define the function sequence {yk(t)}, k = 0, 1, . . ., such that

y0(t) = x(t), yk+1(t) = c + Φ(t, yk(θ(t))) for t ≥ t0. (23)

Then, one can easily see that yk(t) is well-defined and

0 ≤ yk(t) ≤ x(t), c ≤ yk+1(t) ≤ yk(t).

Thus, yk is positive and nonincreasing in k for t ≥ t0. This means we may define y(t) =
lim

k→∞

yk(t). Since 0 < y(t) ≤ yk(t) ≤ x(t) for all k ≥ 0 and

Φ(t, yk(θ(t))) ≤ Φ(t, x(θ(t))),

the convergence of {yk(t)} is uniform with respect to t. Now, taking the limit of both sides
of (23), we have

y(t) = c + Φ(t, y(θ(t))) for t ≥ t0. (24)

Finally, taking the delta derivative of (24) four times, we obtain

L4y(t) + q(t)f(y(θ(t))) = 0.
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Case (II). Lix(t) > 0, i = 0, 1, 3 and L2x(t) < 0 for t ≥ t0. Integrating (22) from t ≥ t0 to u

and letting u → ∞, we have

−x∆2

(t) ≥

(

1

p(t)

∫

∞

t

∫

∞

s

q(u)f(x(θ(u)))∆u∆s

)
1
α

Define

Ψ(t, x(θ(t))) :=

∫ t

t0

∫

∞

s3

(

1

p(s2)

∫

∞

s2

∫

∞

s1

q(s)f(x(θ(s)))∆s∆s1

)
1
α

∆s2∆s3.

Then

x(t) ≥ c + Ψ(t, x(θ(t))) with c = x(t0).

The rest of the proof is similar to that of Case (I) and hence omitted. 2

Theorem 4.2 Let (2) hold. If

x∆2

(t) +

(

1

p(t)

∫

∞

t

∫

∞

s

q(u)∆u

)
1
α

f
1
α (x(σ(t)) = 0 (25)

is oscillatory, then all bounded solutions of equation (1) are oscillatory.

Proof: Let x(t) be a nonoscillatory bounded solution of equation (1), say, x(t) > 0 for t ≥ t0,
t0 ∈ T. It is easy to check that x(t) satisfies (II) for t ≥ t1 ≥ t0, t1 ∈ T. Integrating equation
(1) from t ≥ t1 to u and letting u → ∞, we have

L3x(u) − L3x(t) = −

∫ u

t

q(s)f(xσ(s))∆s

and so

L3x(t) ≥

∫

∞

t

q(s)f(xσ(s))∆s ≥ f(xσ(t))

∫

∞

t

q(s)∆s, t ≥ t1. (26)

Once again, integrating (26) from t ≥ t1 to u and letting u → ∞, we obtain

−L2x(t) ≥ f(xσ(t))

∫

∞

t

(
∫

∞

s

q(v)∆v

)

∆s, t ≥ t1

or

x∆2

(t) +

(

1

p(t)

∫

∞

t

(

∫

∞

s

q(v)∆v)∆s

)
1
α

f
1
α (xσ(t)) ≤ 0, t ≥ t1.

Similar to the proof of Case (II) in Lemma 4.1, we can show that (25) has an eventually
positive solution, which contradicts the hypothesis and completes the proof. 2

By the similar method of proof in Lemma 4.1, we can show that the following comparison
result.
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Lemma 4.3 Let (2) hold. If

x∆(t) + q(t)f(x(θ(t)) ≤ 0,

has an eventually positive (negative) solution, then

x∆(t) + q(t)f(x(θ(t)) = 0

also has an eventually positive (negative) solution.

Now we establish some oscillation criteria for equation (20).

Theorem 4.4 Let (2) hold and assume that f satisfies

−f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0. (27)

If

y∆(t) + q(t)f(H(θ(t), t0; p))f(y
1
α (τ(θ(t)))) = 0 (28)

is oscillatory, then equation (20) is oscillatory.

Proof: Let x(t) be a nonoscillatory solution of equation (20), say, x(t) > 0 for t ≥ t0, t0 ∈ T,
and x(t) satisfies (I) or (II). By Lemma 2.1, there exists t1 ≥ t0 so large that

x(θ(t)) ≥ H(θ(t), t0; p)L
1
α

3 x(τ(θ(t))) for t ≥ t1, t1 ∈ T. (29)

Using (29) and (27) in (20), we have

−(L3x(t))∆ ≥ q(t)f(H(θ(t)), t0; p))f(L
1
α

3 x(τ(θ(t)))), t ≥ t1.

Substituting y(t) for L3x(t), t ≥ t1, we get

−y∆(t) ≥ q(t)f(H(θ(t)), t0; p))f(y
1
α (τ(θ(t)))), t ≥ t1.

Note that x(t) satisfies (I) or (II) implies that y(t) > 0 for t ≥ t1. So (28) has an eventually
positive solution by Lemma 4.3, which contradicts with the hypothesis and completes the
proof. 2

We now present the following result for the oscillation of all bounded solutions of equation
(20).

Theorem 4.5 Let (2) hold. If

∫

∞

t0

∫

∞

k

(

1

p(ν)

∫

∞

ν

∫

∞

τ

q(s)∆s∆τ

)
1
α

∆ν∆k = ∞, (30)

then all bounded solutions of equation (20) are oscillatory.
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Proof: Let x(t) be a nonoscillatory bounded solutions of equation (20), say, x(t) > 0 for
t ≥ t0. Clearly, x(t) satisfies (II) for t ≥ t1 for some t1 ≥ t0. Now, there exist a constant
c > 0 and an t2 ≥ t1, t2 ∈ T such that

c

2
≤ x(θ(t)) ≤ c for t ≥ t2. (31)

Using (31), we have

L4x(t) + q(t)f(
c

2
) ≤ 0 for t ≥ t2. (32)

Integrating (32) from t ≥ t2 to u ≥ t and letting u → ∞, we have

L3x(t) ≥ f(
c

2
)

∫

∞

t

q(s)∆s. (33)

Once again, integrating (33) from t ≥ t2 to u ≥ t and letting u → ∞, we get

−x∆2

(t) ≥ f
1
α (

c

2
)

(

1

p(t)

∫

∞

t

∫

∞

τ

q(s)∆s∆τ

)
1
α

.

Therefore, we find

x(t) ≥ x(t1) + f
1
α (

c

2
)

∫

∞

t2

∫

∞

k

(

1

p(ν)

∫

∞

ν

∫

∞

τ

q(s)∆s∆τ

)
1
α

∆ν∆k → ∞ as t → ∞,

which contradicts with (30) and completes the proof. 2

The following theorems are concerned with a necessary and sufficient condition for the
oscillation of all bounded and unbounded solutions of

L4x(t) + q(t)xγ(θ(t)) = 0, (34)

where γ is the ratio of two positive odd integers.

Theorem 4.6 Let γ > α and condition (2) hold. Then all bounded solutions of equation (34)
are oscillatory if and only if (30) holds.

Proof: Let x(t) be a nonoscillatory bounded solution of equation (34), say x(t) > 0 for t ≥ t0,
t0 ∈ T. Clearly, x(t) satisfies (II) for t ≥ t1 for some t1 ≥ t0, t1 ∈ T. The proof of the “if”
part is an immediate corollary of Theorem 4.5 and hence omitted.

Now, we prove the “only if” part of the theorem. Let c > 0 be a given arbitrary constant,
and choose a large T ≥ t1, T ∈ T such that

∫

∞

T

∫

∞

k

(

1

p(ν)

∫

∞

ν

∫

∞

τ

q(s)∆s∆τ

)
1
α

∆ν∆k ≤
1

2
c1− γ

α .

We introduce the Banach space A of all bounded real-valued functions defined on [T,∞)
T

with the norm ||x|| = sup
t∈[T,∞)

T

|x(t)|. We define a bounded convex and closed subset B of A

as
B = {x ∈ A :

c

2
≤ x(θ(t)) ≤ c, t ≥ T }.
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Next, let F be a mapping defined on B by

(Fx)(t) = c −

∫ t

T

∫

∞

k

(

1

p(ν)

∫

∞

ν

∫

∞

τ

q(s)xγ(θ(s))∆s∆τ

)
1
α

∆ν∆k.

It is now easy to show that F maps B into itself and F is a continuous mapping. Also F(B)
is relatively compact in A. Therefore, by Schauder fixed point theorem, there exists x ∈ B
such that x = Fx. It is clear that the fixed point x = x(t) gives a positive solution of (34)
for t ≥ T . 2

Theorem 4.7 Let γ < α and (2) hold. Then all unbounded solutions of (34) are oscillatory
if and only if for all large t ≥ t0, t0 ∈ T,

∫

∞

q(t)Hγ
1 (θ(t), t0; p)∆t = ∞, (35)

where

H1(t, t0; p) =

∫ t

t0

∫ u

t0

(

s − t0

p(s)

)
1
α

∆s∆u.

Proof: Let x(t) be an unbounded nonoscillatory solution of equation (34), say x(t) > 0 for
t ≥ t0, t0 ∈ T. It is easy to see that x(t) satisfies (I), and so,

x(t) ≥ H1(t, t0; p)L
1
α

3 x(t), t ≥ t1 ≥ t0, t1 ∈ T

Furthermore, we have

xγ(θ(t)) ≥ H
γ
1 (θ(t), t0; p)L

γ

α

3 x(θ(t)) ≥ H
γ
1 (θ(t), t0; p)L

γ

α

3 x(t). (36)

Using (36) in (34), we obtain

−L4x(t) ≥ q(t)Hγ
1 (θ(t), t0; p)L

γ

α

3 x(t).

Set y(t) = L3x(t). Then

y∆(t) + q(t)Hγ
1 (θ(t), t0; p)y

γ

α (t) ≤ 0. (37)

Dividing both sides of (37) by y
γ

α (t) and integrating from t1 to u

∫ u

t1

q(t)Hγ
1 (θ(t), t0; p)∆t ≤ −

∫ u

t1

y∆(t)

y
γ

α (t)
∆t.

By Lemma 2.4 (i) and as u → ∞ , we conclude that

∫

∞

t1

q(t)Hγ
1 (θ(t), t0; p)∆t ≤

∫

∞

t1

−y∆(t)

y
γ

α (t)
∆t < ∞,

which contradicts with (35).
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To prove the “only if” part it suffices to assume that

∫

∞

q(s)Hγ
1 (θ(s), t0; p)∆s < ∞,

and show the existence of a nonoscillatory solution of (34). Let c > 0 be an arbitrary constant
and choose T > t1 ≥ t0, T ∈ T sufficiently large so that

∫

∞

T

q(s)Hγ
1 (θ(s), t0; p)∆s < c1−α

γ .

Let X be the subset of all real-valued functions set X1 defined on [T,∞)
T

by

X = {x : c1H1(t, T ; p) ≤ x(t) ≤ c2H1(t, T ; p), t ≥ T },

where c1 = ( c
2 )

1
α and c2 = (2c)

1
α . Clearly, X is a closed, convex and compact subset of X1.

Let S be a mapping defined on X as follows: For x ∈ X ,

(Sx)(t) =

∫ t

T

∫ k

T

(

1

p(ν)

[

c(ν − T ) +

∫ ν

T

∫

∞

τ

q(s)xγ(θ(s))∆s∆τ

])
1
α

∆ν∆k for t ≥ T.

(38)
It is easy to show that S is continuous and maps X into itself and relatively compact in X1.
Therefore, by Schauder fixed point theorem, S has a fixed point x in X which satisfies

x(t) =

∫ t

T

∫ k

T

(

1

p(ν)

[

c(ν − T ) +

∫ ν

T

∫

∞

τ

q(s)xγ(θ(s))∆s∆τ

])
1
α

∆ν∆k for t ≥ T. (39)

Taking the delta derivative four times on (39), we see that x = x(t) is a positive solution of
(34) for t ≥ T . 2
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