
.

On Well-posedness of Impulsive Problems for
Nonlinear Parabolic Equations ∗

Weinian Zhang§, Ravi P. Agarwal† and Elvan Akın–Bohner&

§Department of Mathematics, Sichuan University

Chengdu 610064, P.R. China

wnzhang@scu.edu.cn

†Department of Mathematical Sciences

Florida Institute of Technology

150 W University Boulevard Melbourne, FL 32901

agarwal@fit.edu
&Department of Mathematics-Statistics,

University of Nebraska-Lincoln

eakin@math.unl.edu

ABSTRACT

In this paper we give weaker conditions for well-posedness of im-
pulsive problems for nonlinear parabolic equations, including ex-
istence, uniqueness and continuous dependence, even in case their
corresponding Cauchy problems do not have global solutions. With
some concrete examples of PDEs we show when their impulsive
problems are well-posed and how the well-posedness is related to
life-span of PDEs. We also indicate that some assumptions in [6]
and [9] are unnecessary.
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1 Introduction

An impulsive problem of differential equation can be regarded as a combination of
a Cauchy problem and short-term perturbations, the durations of which are neg-
ligible in comparison with the duration of the whole process. Many phenomena
subjected to abrupt changes can be modelled as impulsive problems of differential
equations (see [7] and [10]). Recently, impulsive problems for evolution equations
are getting more attractive (see [1, 2, 3, 6, 9]). In 1997, Rogovchenko in [9] gave
a survey to some basic results on impulsive parabolic equations with sectorial lin-
ear operators, where existence and uniqueness of bounded solutions were studied
with successive approximation but a very restrictive condition was imposed on the
Green’s functions. Later, Liu in [6] considered relations between classical solutions
and mild solutions of impulsive problems for parabolic equations with more general
unbounded linear operators. However, assumptions in [6] are enough to guarantee
the corresponding Cauchy problems (without impulsive conditions) have solutions
globally.

The existence of global solutions for PDEs usually requires stronger conditions
but, for well-posedness of impulsive problems, it may not be necessary to demand
conditions so stronger. In fact, an impulsive problem is expected to be well-posed
on a large interval of time even if its corresponding Cauchy problem blows up in
a finite period. This idea motivates us to find more reasonable conditions for the
well-posedness in this paper.

In this paper we give weaker conditions for well-posedness of impulsive problems
for nonlinear parabolic equations, including existence, uniqueness and continuous
dependence. With some concrete examples of PDEs we show when the impulsive
problems of PDEs are well-posed and how the well-posedness is related to life-span
of PDEs. We also indicate that some assumptions in [6] and [9] are unnecessary.
To avoid confusion with the Laplacian operator, the difference of a function u(t) is
denoted by δu(t) instead of ∆u(t).

2 Basic Results

Let X be a Banach space with the norm ‖·‖, L(X) denote the space of all bounded
linear operators on X and

PC([0, T0], X) = {u : [0, T0] 7→ X|u(t) is continuous at t 6= ti, left continuous at
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t = ti, and the right limit u(t+i ) exists for i = 1, 2, ..., p},
where 0 < t1 < t2 < ... < tp < T0 < +∞, u(t+i ) := limt>ti,→ti u(t) and u(t−i ) :=
limt<ti,→ti u(t), which is a Banach space with the norm ‖u‖PC = supt∈[0,T0] ‖u(t)‖,
as in [4].

We discuss solutions u(t) in PC([0, T0], X) for the impulsive problem of the
evolution equation

d

dt
u+ Au = f(t, u), 0 < t < T0, t 6= ti, (2.1)

u(0) = u0 (2.2)

δu(ti) = Iiu(ti), i = 1, 2, ..., p, (2.3)

where u(t) ∈ X and δu(ti) = u(t+i )− u(t−i ).

As in [9], we also assume that
(H1) A is a sectorial operator in X with the sector Sa,η := {λ ∈ C : η ≤
|arg(λ − a)| ≤ π, λ 6= a} in the resolvent set of A, where a, η are definite re-
als and η ∈ (0, π/2);
(H2) f : [0, T0] × Xα → X is continuous and Lipschitzian in u ∈ Xα with Lips-
chitzian constant K > 0, where 0 ≤ α ≤ 1 and Xα denotes the fractional power
subspace of X;
(H3) all Ii : Xα → Xα, i = 1, 2, ..., p, are continuous operators.

Recall that a linear operator A on a Banach space X is sectorial if A is a closed,
densely defined operator such that, for some ϕ ∈ (0, π/2) and some µ ≥ 1 and real
a, the sector Sa,ϕ := {λ ∈ C : ϕ ≤ |arg(λ − a)| ≤ π, λ 6= a} is in the resolvent
set ρ(A) of A, and ‖(λ− A)−1‖ ≤ µ

|λ−a| for all λ ∈ Sa,ϕ. Further, for any sectorial
operator A there is a real number a such that Reσ(A+aI) > 0. With A1 := A+aI

(where I is the identity operator) we can define the fractional power operator Aα1
of A1 for 0 ≤ α ≤ 1. Then we define the fractional power space Xα to be the
domain D(Aα1 ) of Aα1 , and the graph norm ‖x‖α := ‖Aα1x‖, x ∈ Xα. Here we can
take A1 := A − (a − |a|/2)I without loss of generality, where a is given in (H1).
The concepts of sectorial operator and fractional power subspace can be found in
[5]. Different choices of a give equivalent spaces Xα and equivalent norms on that
space (Theorem 1.4.6 of Henry [5]), and Xα is a Banach space with the graph
norm. Clearly, −A generates an analytic semigroup S(t) = e−tA, t ≥ 0, on X and

‖e−At‖L(X) ≤ Ce−at, ‖Aα1 e−At‖L(X) ≤ Ct−αe−at (2.4)

for some constant C > 0, by Theorems 1.3.4 and 1.4.3 of [5].

In comparison with (H3), Theorem 2.1 in [6] uses another stronger assump-
tion, that all Ii : Xα → Xα are Lipschitzian with Lipschitz constants ki > 0,
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i = 1, 2, ..., p, to give existence and uniqueness of mild solutions (roughly speaking,
the solutions of the equivalent integral equation, which are integrable in t) when
maxt∈[0,T0] ‖S(t)‖L(X)(KT0 +

∑p
i=1 ki) < 1. Actually, for a given equation this re-

quires both T0 > 0 and ki, i = 1, 2, ..., p, are very small, i.e., the described impulsive
phenomenon can only occur transiently and the impulses are almost constant, but
most of practical models are not like this. In the following we will give a stronger
result with a much weaker condition.

For convenience, we take notations t0 = 0 and tp+1 = T0. Let γ = max1≤i≤p+1

|ti − ti−1|, which is called the maximum pace of impulsion.

Theorem 1 Suppose (H1-H3) hold. If

KC

1− α
max{e−aγ, 1}(γ1−α + |a|γ2−α) < 1 (2.5)

then for any u0 ∈ Xα the impulsive problem (2.1–2.3) has a unique solution u(t)
on [0, T0], which satisfies

u(t) = e−Atu0 +
∫ t

0
e−A(t−s)f(s, u(s)) ds+

∑
0<ti<t

e−A(t−ti)Ii(u(ti)), (2.6)

for t ∈ [0, T0].

Theorem 2 Under the same conditions as in Theorem 1, the solution of the prob-
lem (2.1–2.3) is continuously dependent on the initial data.

Remark 1 Theorem 1 and 2 indicate that with the basic assumptions (H1–H3)
the impulsive problem (2.1–2.3) is well-posed for all u0 ∈ Xα if (2.5) holds.

Remark 2 A slightly stronger condition that

KC(1 + |a|)e
|a|γγ1−α

1− α
< 1 (2.7)

would be more intuitive and easier to check. It is still much weaker than that in
[6]. In fact, this condition is satisfied when γ > 0 small enough, so the whole
interval [0, T0] need not to be small. It only requires that the paces of impulsion
are small. That means, even if the corresponding Cauchy problem blows up in
[0, T0], the impulsive problem can be well-posed when the impulsive condition is
given appropriately.
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Remark 3 For well-posedness, it suffices to consider the maximum pace of impul-
sion to be γ = max1≤i≤p |ti− ti−1|. In fact, after tp there is no influence of impulses
and existence of solutions on the final interval [tp, T0] does not affect well-posedness
of impulsive problems.

For example,
ut = ∆u+ sinu 0 < x < π, t ∈ (0,∞),
u(0, t) = u(π, t) t ∈ (0,∞),
u(x, 0) = u0(x) 0 < x < π,
δu(ti) = Iiu(ti), ti ∈ (0,∞), i = 1, 2, ..., p,

(2.8)

where ∆ is the Laplacian operator. Take X := L2(0, π), A := −d2/dx2 with
domain H2(0, π) ∩ H1

0 (0, π), and f(t, u) = sinu. Clearly, the spectrum σ(A) =
{λn = n2 : n = 1, 2, ...}. It is not hard to see

‖Aα1 e−At‖L(X) ≤
{

(te/α)−α, 0 < t ≤ α/λ1,
λα1 e

−λ1t, t ≥ α/λ1,

≤ (
2α
e

)αt−αe−
λ1
2 t, ∀t > 0.

In particular, in X1/2 = D(A1/2) = H1
0 (0, π), the condition (2.7) is equivalent to

γeγ < e/9. Simple computation shows that the problem (2.8) is well-posed if the
pace γ < 1/5.

Those modified equations with cut-off nonlinearity in a compact subset when
we discuss invariant manifolds also have nonlinear terms with global Lipschitzian
condition. In the same way we can also give an estimate of maximum pace for
well-posedness.

As previous we see well-posedness of impulsive problems is related to blow-up
and life span problem of the corresponding Cauchy problems. Consider the Cauchy
problem {

ut = ∆u+ |u|p−1u in RN × (0,∞),
u(x, 0) = u0(x) in RN ,

(2.9)

where p > 1. Mizoguchi and Yanagida in [8] gives an estimate of lower bound of
life-span in its Theorem 2.4, that is, for some initial data u0(x) = λφ ∈W 1,∞(RN),
λ > 0 is a constant, the life-span

T (λ) ≥ λ−( 1
p−1−

β
2(1−µ) )−1+ε

where β, µ, ε are positive constant. Obviously, its impulsive problem with the
condition

δu(t1) = I1u(t1), 0 < t1 ≤ λ−( 1
p−1−

β
2(1−µ) )−1+ε,

is well-posed.
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3 Proof of Existence and Uniqueness

For the Cauchy problem of (2.1) with u(τ) = φ, τ ∈ [0, T0) and φ ∈ Xα, by Lemma
3.3.2 in [5], we can consider equivalently the integral equation

u(t) = e−A(t−τ)φ+
∫ t

τ
e−A(t−s)f(s, u(s)) ds. (3.10)

Let W consist of all continuous functions u : [τ, τ + γ]→ Xα. It is a complete
metric space with the usual sup-norm ‖u‖∗ = supτ≤t≤τ+γ ‖u(t)‖α. Define a mapping
F : W → W by

Fu(t) = e−A(t−τ)φ+
∫ t

τ
e−A(t−s)f(s, u(s)) ds. (3.11)

It is clearly true that F(W ) ⊂ W . Thus, for u, v ∈W and τ ≤ t ≤ τ + γ,

‖Fu(t)−Fv(t)‖α ≤
∫ t

τ
‖Aα1 e−A(t−s)‖L(X) · ‖f(s, u(s))− f(s, v(s))‖ ds

≤ KC
∫ t

τ
(t− s)−αe−a(t−s) ds‖u− v‖∗

= KC

(
(t− τ)1−α

1− α
e−a(t−τ) +

a

1− α

∫ t

τ
(t− s)1−αe−a(t−s) ds

)
‖u− v‖∗

≤ KC

1− α
max{e−aγ, 1}(γ1−α + |a|γ2−α)‖u− v‖∗, (3.12)

where integration by parts and inequalities in (2.4) are applied. By (2.5), F is a
contraction of W into W . This implies the following result.

Lemma 1 Under the same conditions as in Theorem 1, the Cauchy problem of
(2.1) with u(τ) = φ, τ ∈ [0, T0) and φ ∈ Xα, has a unique solution u ∈ C([τ, τ +
γ], Xα) .

In the special case where τ = 0 and φ = u0 ∈ Xα, by Lemma 1 we obtain a
unique solution u1 ∈ C([0, γ], Xα), which satisfies (3.10). Since 0 ≤ t1 ≤ γ, by
continuity,

u1(t1) = e−At1u0 +
∫ t1

0
e−A(t1−s)f(s, u1(s)) ds (3.13)

is well defined in Xα. Clearly u1(t1) + I1(u1(t1)) ∈ Xα. Taking τ = t1 and
φ = u1(t1)+I1(u1(t1)), by Lemma 1 we also obtain a unique solution u2 ∈ C([t1, t1+
γ], Xα), which also satisfies an integral equation of the form (3.10), i.e.,

u2(t) = e−A(t−t1)[u1(t1) + I1(u1(t1))] +
∫ t

t1
e−A(t−s)f(s, u2(s)) ds (3.14)
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on the interval t ∈ [t1, t1 + γ], which obviously contains t2 by the definition of γ.
Recursively, for i = 3, ..., p+ 1 we can obtain a solution ui ∈ C([ti−1, ti−1 + γ], Xα),
which also satisfies

ui(t) = e−A(t−ti−1)[ui−1(ti−1) + Ii−1(ui−1(ti−1))]

+
∫ t

ti−1

e−A(t−s)f(s, ui(s)) ds (3.15)

on the interval t ∈ [ti−1, ti−1 + γ], which obviously contains ti. Define

u(t) =
{
u0, t = 0,
ui(t), ti−1 < t ≤ ti, ∀i = 1, 2, ..., p+ 1. (3.16)

Obviously, the constructed function u(t) is the unique solution of the impulsive
problem (2.1–2.3).

Finally, (2.6) can be proved by induction. In fact, it holds for t ∈ (0, t1]. Assume
that (2.6) holds for t ∈ (ti−1, ti]. For t ∈ (ti, ti+1], from (3.16) and (3.15) we have

u(t) = ui+1(t) = e−A(t−ti)[ui(ti) + Ii(ui(ti))] +
∫ t

ti
e−A(t−s)f(s, ui+1(s)) ds

= e−A(t−ti)u(ti) +
∫ t

ti
e−A(t−s)f(s, ui+1(s)) ds+ e−A(t−ti)Ii(ui(ti))

= e−A(t−ti){e−Atiu0 +
∫ ti

0
e−A(ti−s)f(s, u(s)) ds+

∑
0<tj<ti

e−A(ti−tj)Ij(u(tj))}

+
∫ t

ti
e−A(t−s)f(s, ui+1(s)) ds+ e−A(t−ti)Ii(ui(ti))

= e−Atu0 +
∫ ti

0
e−A(t−s)f(s, u(s)) ds+

∑
0<tj<ti

e−A(t−tj)Ij(u(tj))

+
∫ t

ti
e−A(t−s)f(s, u(s)) ds+ e−A(t−ti)Ii(u(ti))

= e−Atu0 +
∫ t

0
e−A(t−s)f(s, u(s)) ds+

∑
0<tj<t

e−A(t−tj)Ij(u(tj)). (3.17)

The proof is complete. 2

4 Proof of Continuous Dependence

As proved in Theorem 1, for u0, v0 ∈ Xα and t ∈ [0, t1] we have

‖u(t)− v(t)‖α ≤ ‖e−At‖L(X)‖u0 − v0‖α
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+
∫ t

0
‖Aα1 e−A(t−s)‖L(X) · ‖f(s, u(s))− f(s, v(s))‖ ds

≤ Ce−at‖u0 − v0‖α

+KC
∫ t

0
(t− s)−αe−a(t−s)‖u(s)− v(s)‖α ds

≤ Ce−at‖u0 − v0‖α

+KC
∫ t

0
(t− s)−αe−a(t−s) ds sup

0≤s≤t1
‖u(s)− v(s)‖α

≤ Ce|a|γ‖u0 − v0‖α + Ψ sup
0≤s≤t1

‖u(s)− v(s)‖α (4.18)

where Ψ = KC
1−α max{e−aγ, 1}(γ1−α + |a|γ2−α) < 1 by (2.5). Hence

sup
0≤t≤t1

‖u(t)− v(t)‖α ≤
Ce|a|γ

1−Ψ
‖u0 − v0‖α. (4.19)

Similarly, by left continuity of functions in PC([0, T0], X) we can also prove by
induction that

sup
ti<t≤ti+1

‖u(t)− v(t)‖α ≤
Ce|a|γ

1−Ψ
‖u(t+i )− v(t+i )‖α, i = 1, 2, ..., p, (4.20)

that is,

sup
ti<t≤ti+1

‖u(t)− v(t)‖α ≤
Ce|a|γ

1−Ψ
(‖u(ti)− v(ti)‖α + ‖Ii(u(ti))− Ii(v(ti))‖α),(4.21)

where i = 1, 2, ..., p.

For arbitrarily given ε > 0, by continuity of Ip, there exists a constant ρp > 0
such that

‖Ip(u(tp))− Ip(v(tp))‖α <
1
2

(
Ce|a|γ

1−Ψ
)−1ε

when ‖u(tp)− v(tp)‖α < ρp. Thus

sup
tp<t≤tp+1

‖u(t)− v(t)‖α ≤ ε (4.22)

when

‖u(tp)− v(tp)‖α < min{1
2

(
Ce|a|γ

1−Ψ
)−1ε, ρp}. (4.23)

Let εp = min{1
2(Ce

|a|γ

1−Ψ )−1ε, ρp, ε}. Similarly, there is also a constant ρp−1 > 0 such
that

sup
tp−1<t≤tp

‖u(t)− v(t)‖α < εp < ε (4.24)
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when

‖u(tp−1)− v(tp−1)‖α < min{1
2

(
Ce|a|γ

1−Ψ
)−1εp, ρp−1}. (4.25)

Repeating the same procedure, we can recursively define positive εp−1, ..., ε2, ε1

and correspondingly obtain positive constants ρp−2, ..., ρ1, ρ0 such that, for i =
1, 2, ..., p− 1,

sup
ti−1<t≤ti

‖u(t)− v(t)‖α < εi < ε (4.26)

when

‖u(ti−1)− v(ti−1)‖α < min{1
2

(
Ce|a|γ

1−Ψ
)−1εi, ρi−1}. (4.27)

This implies that

‖u− v‖PC ≤ max
i=1,...,p+1

sup
ti−1<t≤ti

‖u(t)− v(t)‖α < ε (4.28)

when

‖u(0)− v(0)‖α < min{1
2

(
Ce|a|γ

1−Ψ
)−1ε1, ρ0}. (4.29)

This proves the continuous dependence on initial data. 2

Given a stronger condition in (H3) that all Ii : Xα → Xα, i = 1, 2, ..., p
are Lipschitzian continuous operators, we can prove much easier the continuous
dependence with (2.6) and Gronwall’s inequality.

5 More Remarks on [9]

In [9] the so-called (α, β)-Green’s function (simply called Green’s function) plays
an very important role that it appears in almost every theorems in [9]. It relates
to the evolution operator K(t, τ) : X → Xα, defined by

K(t, τ) = exp(−A(t− tp)){Πp−1
i=1 (Bi+1 + I) exp(−A(ti+1 − ti))}

×(B1 + I) exp(−A(t1 − τ)), (5.30)

where I is the identity operator, Bi is the corresponding linear operator in the
linear case of the impulse Iiu(ti) = Biu(ti) + bi as in ( 2.3) and all bi are constant
vectors, i = 1, 2, ..., p. It is also required in [9] that∫ +∞

−∞
‖AβK(t, τ)‖ dτ +

p∑
i=1
‖AβK(t, ti)‖ ≤ L(K) (5.31)
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for a constant L(K) > 0 uniformly with respect to t, where 0 ≤ β ≤ α < 1 and
β, α are given for fractional power subspaces Xβ, Xα. As a main result, Theorem
2.2 in [9] gives existence and uniqueness of bounded solutions under the condition
that

(L(K) + 1)N(%) < 1/2, (L(K) + 1)M(1− (L(K) + 1)N(%))−1 ≤ % (5.32)

for any suffciently small %, where M is a positive constant and N(%) is the local
Lipschitzian constant of the nonlinear terms of both the equation and the impulses
as ‖u‖α ≤ % such that N(%)→ 0 as %→ 0.

It is worthy mentioning that the requirement (5.31) in [9] is so restrictive that
a simple ODE cannot satisfy it. For example, consider the ODE

u′ = −u (5.33)

with a trivial impulsive condition δu(t1) = 0 (i.e., no impulse). In this circumstance,
B1 = ... = Bp = 0 and K(t, τ) = e−(t−τ). For simplicity, we consider β = α = 0.
Obviously, in (5.31),∫ +∞

−∞
‖AβK(t, τ)‖ dτ =

∫ +∞

−∞
e−(t−τ) dτ = +∞. (5.34)

In addition, suppose we study impulsive problems with (5.31). The condition
(5.32) restricts the existence of solutions in a very small neighborhood of 0, so
actually the result is very local.
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