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Abstract. In this paper, we investigate comparison criteria for third
order nonlinear dynamic equations with mixed nonlinearities on time
scales. Our results are essentially new. Some applications illustrating
the importance of our results are included and these applications solve
a problem posed in [2, Remark 3.3].

1. Introduction

We investigate comparison criteria for the third order nonlinear dynamic
equation with mixed nonlinearities on time scales of the form

[r2(t)φγ2([r1(t)φγ1(x∆(t))]∆)]∆+p(t)φγ2([r1(t)φγ1(x∆(t))]∆
σ
)+f(t, x(t)) = 0,

(1.1)
where

f(t, x(t)) : = A(t)φγ(x(h1(t))) +B(t)φβ(x(h2(t)))

+

∫ b

a
q(t, s)φα(s)(x(h(t, s)))∆ζ(s), (1.2)

on a time scale T which is unbounded above, where −∞ < a < b ≤ ∞
and ri ∈ Crd ([t0,∞)T , (0,∞)), i = 1, 2, where Crd is the space of right-

dense continuous functions; φθ (u) := |u|θ−1 u, θ > 0; α ∈ Crd
(
[a, b)T̂,R

+
)

is strictly increasing such that 0 ≤ α (a) < λ < α (b−) with β > γ :=

γ1γ2 > λ > 0, where T̂ is a time scale; ζ ∈ Crd
(
[a, b)T̂,R

)
is nonde-

creasing; p ∈ Crd ([t0,∞)T , (0,∞)); and A, B ∈ Crd ([t0,∞)T , [0,∞)) and
also q ∈ Crd

(
[t0,∞)T× [a, b]T̂ , [0,∞)

)
. The functions h1, h2 : T→ T and

h : T× T̂→ T are rd-continuous functions such that

lim
t→∞

h1(t) = lim
t→∞

h2(t) = lim
t→∞

h(t, s) =∞ for s ∈ T̂.

Here
∫ b
a f (s) ∆ζ (s) denotes the Riemann-Stieltjes integral of the function

f on [a, b)T̂ with respect to ζ. We note that as special cases, the integral
term in the equation becomes a finite sum when ζ (s) is a step function and

a Riemann integral when ζ (s) = s. For T̂ = R, n ∈ N, and s ∈ [0, n+ 1) ,
1
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we assume that

ζ (s) =

n∑
j=1

χ (s− j) with χ (s) =

{
1, s ≥ 0
0, s < 0;

α ∈ C [0, n+ 1) such that α (j) = αj , j = 1, ..., n,

αj < λ, j = 1, 2, ..., l, αj > λ, j = l + 1, l + 2, ..., n; (1.3)

q (t, j) = qj (t) and h (t, j) = h̄j (t) for j = 1, ..., n. In this case, mixed
nonlinearities f(t, x(t)) can be written as

f(t, x(t)) = A(t)φγ(x(h1(t))) +B(t)φβ(x(h2(t))) +
n∑
j=1

qj(t)φαj (x(h̄j(t))).

Note that we can get that all terms are sublinear, or superlinear, or a com-
bination of sublinear and superlinear depending on different choices of αi.
For more details, see [3, 25]. Throughout this paper, we let

x[i] := riφγi([x
[i−1]]∆), i = 1, 2, with x[0] = x.

In this case, equation (1.1) becomes[
x[2](t)

]∆
+ p(t)φγ2

([
x[1](t)

]∆σ
)

+ f(t, x(t)) = 0, (1.4)

where f(t, x(t)) is defined by (1.2).
The theory of time scales, which has recently received a lot of attention,

was introduced by Stefan Hilger in his PhD dissertation written under the
direction of Bernd Aulbach (see [23]). Since then a rapidly expanding body
of literature has sought to unify, extend, and generalize ideas from discrete
calculus, quantum calculus, and continuous calculus to arbitrary time scale
calculus. Recall that a time scale T is a nonempty, closed subset of the reals,
and the cases when this time scale is the reals or the integers represent the
classical theories of differential and of difference equations. Many other
interesting time scales exist, and they give rise to many applications (see
[7]). Not only does the new theory of the so-called “dynamic equations”
unify the theories of differential equations and difference equations, but also
extends these classical cases to cases “in between”, e.g., to the so-called
q-difference equations when T =qN0 (which has important applications in
quantum theory (see [24])) and can be applied on different types of time
scales such as T =hZ, T = N2

0 and T = Hn (the space of harmonic numbers).
For an excellent introduction to the calculus on time scales, see Bohner and
Peterson [7] and [8].

Although not all solutions of equation (1.4) exist on the whole time scale
T for the asymptotic and oscillation purpose, we are only interested in the
solutions that are extendable to ∞. Thus, we use the following definition of
solutions.
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Definition. By a solution of Eq. (1.4) we mean a nontrivial real–

valued function x ∈ C1
rd ([Tx,∞)T,R) for some Tx ≥ t0 such that x[1], x[2] ∈

C1
rd ([Tx,∞)T,R), and x(t) satisfies Eq. (1.4) on [Tx,∞)T.
Recently, there has been an increasing interest in studying the oscillatory

behavior of all order dynamic equations on time scales, we refer the reader
to the papers [1,5,6,9–16,18–22,26–34] and the references contained therein.

The study content on the oscillatory and asymptotic behavior of second
order dynamic equations on time scales is very rich. In contrast, the study
of oscillation criteria of fourth order dynamic equations is relatively less. To
the best of our knowledge, the oscillatory behavior of fourth order nonlinear
dynamic equations with nonlinear middle term has not been studied till now.
Our aim here is to initiate such a study by establishing some new criteria for
the oscillation of equation (1.4) and some related equations. Our approach
is to reduce the problem in such a way that specific oscillation results for
first and second order equations can be adapted for the third order case.

2. Main Results

In the following, we denote by Lζ(a, b)T̂ the set of Riemann-Stieltjes in-
tegrable functions on [a, b)T̂ with respect to ζ. Let c ∈ [a, b)T̂ such that

α(c) = λ. We further assume that α−1 ∈ Lζ(a, b)T̂ such that

0 ≤ α(a) < λ < α(b−),

∫ c

a
∆ζ(s) > 0 and

∫ b

c
∆ζ(s) > 0.

We start with the following two lemmas which generalize Lemma 2.1 and
Lemma 2.2 in [20,30].

Lemma 2.1. There exists η ∈ Lζ (a, b)T̂ such that η (s) > 0 on [a, b)T̂ ,∫ b

a
α (s) η (s) ∆ζ (s) = λ and

∫ b

a
η (s) ∆ζ (s) = 1. (2.1)

Proof. Let

m := λ

(∫ b

c
∆ζ (s)

)−1 ∫ b

c
α−1 (s) ∆ζ (s) ;

n := λ

(∫ c

a
∆ζ (s)

)−1 ∫ c

a
α−1 (s) ∆ζ (s) ;

η1 (s) :=

{
0, s ∈ [a, c)T̂ ,

λα−1 (s)
(∫ b

c ∆ζ (s)
)−1

, s ∈ [c, b)T̂ ;

and

η2 (s) :=

{
λα−1 (s)

(∫ c
a ∆ζ (s)

)−1
, s ∈ [a, c)T̂ ,

0, s ∈ [c, b)T̂ .

Clearly for i = 1, 2, ηi ∈ Lζ (a, b)T̂ and∫ b

a
α (s) ηi (s) ∆ζ (s) = λ.
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Moreover,∫ b

a
η1 (s) ∆ζ (s) = m = λ

∫ b

c
α−1 (s) ∆ζ (s)

(∫ b

c
∆ζ (s)

)−1

< 1,

and ∫ b

a
η2 (s) ∆ζ (s) = n = λ

∫ c

a
α−1 (s) ∆ζ (s)

(∫ c

a
∆ζ (s)

)−1

> 1.

For k ∈ [0, 1] let

η (s, k) := (1− k) η1 (s) + kη2 (s) , s ∈ [a, b)T̂ .

Then it is easy to see that∫ b

a
α (s) η (s, k) ∆ζ (s) = λ.

Furthermore, since η (s, 0) = η1 (s) and η (s, 1) = η2 (s), we have∫ b

a
η (s, 0) ∆ζ (s) = m and

∫ b

a
η (s, 1) ∆ζ (s) = n.

By the continuous dependence of η (s, k) on k there exists k∗ ∈ (0, 1) such
that η (s) := η (s, k∗) satisfies∫ b

a
η (s) ∆ζ (s) = 1.

Note that η (s) > 0 for s ∈ [a, b)T̂ and
∫ b
a α (s) η (s) ∆ζ (s) = λ. �

Lemma 2.2. Let u ∈ Crd
(
[a, b)T̂ ,R

)
and η ∈ Lζ (a, b)T̂ satisfy u ≥ 0, η > 0

on [a, b)T̂ and
∫ b
a η (s) ∆ζ (s) = 1. Then∫ b

a
η (s)u (s) ∆ζ (s) ≥ exp

(∫ b

a
η (s) ln [u (s)] ∆ζ (s)

)
,

where we use the convention that ln 0 = −∞ and e−∞ = 0.

Proof. Define an operator L as follows:

L (u) :=

∫ b

a
η (s)u (s) ∆ζ (s) .

It is easy to show that L is a linear operator satisfying L (1) = 1 and
L (u) > 0. Since ln θ ≤ θ − 1 for θ > 0. Then for t ∈ [a, b)T̂ we obtain

ln

[
u (s)

L (u)

]
≤ u (s)

L (u)
− 1,

which implies

ln (u (s))− ln (L (u)) ≤ u (s)

L (u)
− 1.



COMPARISON CRITERIA 5

It follows that

L [ln (u (s))− ln (L (u))] ≤ L

[
u (s)

L (u)
− 1

]
= L

[
u (s)

L (u)

]
− L (1) = 1− 1 = 0,

which implies

L [ln (u (s))]− ln (L (u)) ≤ 0,

and so

L (u) ≥ exp (L [ln (u (s))]) .

This completes the proof. �

We will use the following notation:

h∗(t) := sup
s∈[a,b]T̂

{h1(t), h2(t), h(t, s)}, h∗(t) := inf
s∈[a,b]T̂

{h1(t), h2(t), h(t, s)},

and

A1(t) := A(t)Rγ(h1(t), h∗(t)), B1(t) := B(t)Rβ(h2(t), h∗(t)),

q1 (t, s) := q (t, s)Rα(s)(h (t, s) , h∗(t)),

A2(t) := A(t)Λγ (h1(t)) , B2(t) := B(t)Λβ (h2(t)) ,

q2 (t, s) := q (t, s) Λα(s)(h (t, s)),

A3(t) := A(t)Rγ (h∗ (t) , h1 (t)) , B3(t) := B(t)Rβ (h∗ (t) , h2 (t)) ,

q3 (t, s) := q (t, s)Rα(s) (h∗ (t) , h (t, s)) ,

A4(t) := A(t)Rγ (h1(t), T1) , B4(t) := B(t)Rβ (h2(t), T1) ,

q4 (t, s) := q (t, s)Rα(s) (h(t, s), T1) ,

with

R(v, u) :=

∫ v

u
r
− 1
γ1

1 (u) ∆u and Λ(u) :=

∫ ∞
u

r
− 1
γ1

1 (u) ∆u,

and where

Ci(t) := exp

(∫ b

a
η(s) ln

[
qi (t, s)

η(s)

]
∆ζ(s)

)
, i = 1, 2, 3, 4.

First, we use second order dynamic inequalities in order to obtain oscil-
latory solutions for (1.4).

Theorem 2.1. If the second order dynamic inequalities{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)

+Q1(t)φγ2 (y (h∗ (t))) ≤ 0; (2.2){
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)
−Q2(t)φγ2 (y (h∗ (t))) ≥ 0; (2.3){

r2 (t)φγ2
(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)
−Q3(t)φγ2 (y (h∗ (t))) ≥ 0; (2.4)

and{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)

+Q4(t)φγ2 (y (h∗ (t))) ≤ 0, (2.5)
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where

Qi(t) := Ai(t) + δB
(γ2−λ̂)/(β̂−λ̂)
i (t)C

(β̂−γ2)/(β̂−λ̂)
i (t), i = 1, 2, 3, 4,

with β̂ := β
γ1
, λ̂ := λ

γ1
and

δ := (β̂ − λ̂)(β̂ − γ2)(γ2−β̂)/(β̂−λ̂)(γ2 − λ̂)(λ̂−γ2)/(β̂−λ̂),

have no eventually positive solutions, then every solution of equation (1.4)
is oscillatory.

Proof. Assume (1.4) has a nonoscillatory solution x on [t0,∞)T. Then, with-
out loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such that
x(t) > 0, x(hi(t)) > 0 on [T,∞)T, i = 1, 2, and x (h (t, s)) > 0 on [T,∞)T ×
[a, b]T̂. From (1.4), we have for t ∈ [T,∞)T,[

x[2](t)
]∆

+ p(t)φγ2

([
x[1](t)

]∆σ)
= −A(t)φγx(h1 (t))

−B(t)φβ (x(h2 (t)))−
∫ b
a q (t, s)φα(s) (x(h (t, s))) ∆ζ (s) ≤ 0.

Then(
e p
rσ2

(t, t0)x[2](t)

)∆

= e p
rσ2

(t, t0)
[
x[2](t)

]∆
+ e p

rσ2

(t, t0) p(t)
rσ2 (t)x

[2](σ(t))

= e p
rσ2

(t, t0)
{[
x[2](t)

]∆
+ p(t)φγ2

([
x[1](t)

]∆σ)}
≤ 0.

Then e p
rσ2

(t, t0)x[2](t) is nonincreasing on [T,∞)T and x[2] is eventually of

one sign. Therefore
[
x[0]
]∆

and
[
x[1]
]∆

are eventually of one sign. Therefore,
we consider the following cases:

(I)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

> 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

> 0 and
[
x[1] (t)

]∆
> 0 for t ≥ T1.

Then for τ ≥ h∗(t),

x (τ) ≥ x (τ)− x (h∗(t)) =

∫ τ

h∗(t)
x∆(u)∆u

=

∫ τ

h∗(t)
φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

≥ φ−1
γ1

[
x[1] (h∗(t))

] ∫ τ

h∗(t)
r
− 1
γ1

1 (u) ∆u

= φ−1
γ1

[
x[1] (h∗(t))

]
R (τ, h∗(t)) .
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By using this and (1.4), we get{
r2 (t)φγ2

([
x[1](t)

]∆
)}∆

+ p(t)φγ2

([
x[1](t)

]∆σ
)

= −A(t)φγ (x(h1 (t)))−B(t)φβ (x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (x(h (t, s))) ∆ζ (s)

≤ −A1(t)φγ

[
φ−1
γ1

[
x[1] (h∗(t))

]]
−B1(t)φβ

[
φ−1
γ1

[
x[1] (h∗(t))

]]
−
∫ b

a
q1 (t, s) φα(s)

[
φ−1
γ1

[
x[1] (h∗ (t))

]]
∆ζ (s) ,

which yields{
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

[
y∆σ

(t)
]

+A1(t)φγ
[
φ−1
γ1 [y (h∗(t))]

]
+B1(t)φβ

[
φ−1
γ1 [y (h∗(t))]

]
+
∫ b
a q1 (t, s) φα(s)

[
φ−1
γ1 [y (h∗ (t))]

]
∆ζ (s) ≤ 0,

or {
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

[
y∆σ

(t)
]

+A1(t)yγ2 (h∗ (t))

+B1(t)yβ̂ (h∗ (t)) + yλ̂ (h∗ (t))
∫ b
a q1 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≤ 0,
(2.6)

where y(t) = x[1] (t) > 0 for t ∈ [T1,∞)T. Now let η ∈ Lζ(a, b)T̂ be defined
as in Lemma 2.1. Then η satisfies (2.1). It follows that∫ b

a
η(s)

[
α(s)

γ1
− λ̂

]
∆ζ(s) = 0.

From Lemma 2.2 we get∫ b

a
q1 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s)

=

∫ b

a
η(s)

q1 (t, s)

η(s)
[y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s)

≥ exp

(∫ b

a
η(s) ln

(
q1 (t, s)

η(s)
[y (h∗ (t))]

α(s)
γ1
−λ̂
)

∆ζ(s)

)

= exp

 ∫ b
a η(s) ln

[
q1(t,s)
η(s)

]
∆ζ(s)

+ ln (y (h∗ (t)))
∫ b
a η(s)

[
α(s)
γ1
− λ̂

]
∆ζ(s)


= exp

(∫ b

a
η(s) ln

[
q1 (t, s)

η(s)

]
∆ζ(s)

)
= C1(t). (2.7)

This together with (2.6) shows that{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)

+A1(t)yγ2 (h∗ (t))

+B1(t)yβ̂ (h∗ (t)) + C1(t)yλ̂ (h∗ (t)) ≤ 0.
(2.8)
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By using the inequality [16, Lemma 2.1] for all a > 0 and b ≥ 0,

aβ̂−γ2 + baλ̂−γ2 ≥ δb(β̂−γ2)/(β̂−λ̂) for all β̂ > γ2 > λ̂ > 0. (2.9)

Define

a := B
1/(β̂−γ2)
1 y and b := B

(γ2−λ̂)/(β̂−γ2)
1 C1.

Then

B1y
β̂−γ2 + C1y

λ̂−γ2 ≥ δB(γ2−λ̂)/(β̂−λ̂)
1 C

(β̂−γ2)/(β̂−λ̂)
1 .

Therefore (2.8) becomes{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)

+Q1(t)φγ2 (y (h∗ (t))) ≤ 0,

where y(t) is a solution of the above inequality, which is a contradiction.

(II)
[
x[0]
]∆

< 0 and
[
x[1]
]∆

< 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

< 0 and
[
x[1] (t)

]∆
< 0 for t ≥ T1.

Then for τ ≥ T1,

−x (τ) ≤
∫ ∞
τ

x∆ (u) ∆u

=

∫ ∞
τ

φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

≤ φ−1
γ1

[
x[1] (τ)

] ∫ ∞
τ

r
− 1
γ1

1 (u) ∆u

= φ−1
γ1

[
x[1] (τ)

]
Λ (τ) .

From this and equation (1.4), we obtain{
r2 (t)φγ2

([
−x[1](t)

]∆
)}∆

+ p(t)φγ2

([
−x[1](t)

]∆σ
)

= −A(t)φγ (−x(h1 (t)))−B(t)φβ (−x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (−x(h (t, s))) ∆ζ (s)

≥ −A2(t)φγ

[
φ−1
γ1

[
x[1] (h1 (t))

]]
−B2(t)φβ

[
φ−1
γ1

[
x[1] (h2(t))

]]
−
∫ b

a
q2 (t, s) φα(s)

[
φ−1
γ1

[
x[1] (h (t, s))

]]
∆ζ (s)

= A2(t)φγ

[
φ−1
γ1

[
−x[1] (h1 (t))

]]
+B2(t)φβ

[
φ−1
γ1

[
−x[1] (h2(t))

]]
+

∫ b

a
q2 (t, s) φα(s)

[
φ−1
γ1

[
−x[1] (h (t, s))

]]
∆ζ (s) ,
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which yields{
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)
−A2(t)φγ2 [y (h1 (t))]

−B2(t)φβ̂ (y(h2 (t)))−
∫ b
a q2 (t, s)φα(s)

[
φ−1
γ1 [y (h (t, s))]

]
∆ζ (s) ≥ 0,

where y(t) = −x[1] (t) > 0 for t ∈ [T1,∞)T. By using the fact that y is
increasing on [T1,∞)T, we get{

r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)
−A2(t)φγ2 [y (h∗ (t))]

−B2(t)φβ̂ (y(h∗ (t)))−
∫ b
a q2 (t, s)φα(s)

[
φ−1
γ1 [y (h∗ (t))]

]
∆ζ (s) ≥ 0.

or {
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)
−A2(t)φγ2 [y (h∗ (t))]

−B2(t)yβ̂ (h∗ (t))− yλ̂ (h∗ (t))
∫ b
a q2 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≥ 0.
(2.10)

Then, from (2.7) with q1 is replaced by q2, we have∫ b

a
q2 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≥ C2(t).

Therefore{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)
−A2(t)φγ2 [y (h∗ (t))]

−B2(t)yβ̂ (h∗ (t))− C2(t)yλ̂ (h∗ (t)) ≥ 0.
(2.11)

Also, by using the inequality (2.9), (2.11) becomes{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)
−Q2(t)φγ2 (y (h∗ (t))) ≥ 0,

which has an eventually positive solution y(t), which has a contradiction.

(III)
[
x[0]
]∆

< 0 and
[
x[1]
]∆

> 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

< 0 and
[
x[1] (t)

]∆
> 0, for t ≥ T1.

Then for τ ≤ h∗ (t),

−x (τ) ≤ x (h∗ (t))− x (τ)

=

∫ h∗(t)

τ
φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

≤ φ−1
γ1

[
x[1] (h∗ (t))

] ∫ h∗(t)

τ
r
− 1
γ1

1 (u) ∆u

= φ−1
γ1

[
x[1] (h∗ (t))

]
R (h∗ (t) , τ) .
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From this and equation (1.4), we have{
r2 (t)φγ2

([
−x[1](t)

]∆
)}∆

+ p(t)φγ2

([
−x[1](t)

]∆σ
)

= −A(t)φγ (−x(h1 (t)))−B(t)φβ (−x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (−x(h (t, s))) ∆ζ (s)

≥ −A3(t)φγ

(
φ−1
γ1

[
x[1] (h∗(t))

])
−B3(t)φβ

[
φ−1
γ1

[
x[1] (h∗(t))

]]
−
∫ b

a
q3 (t, s) φα(s)

[
φ−1
γ1

[
x[1] (h∗ (t))

]]
∆ζ (s)

= A3(t)φγ

(
φ−1
γ1

[
−x[1] (h∗(t))

])
+B3(t)φβ

[
φ−1
γ1

[
−x[1] (h∗(t))

]]
+

∫ b

a
q3 (t, s) φα(s)

[
φ−1
γ1

[
−x[1] (h∗(t))

]]
∆ζ (s) ,

which yields{
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)
−A3(t)φγ

[
φ−1
γ1 [y (h∗(t))]

]
−B3(t)φβ

[
φ−1
γ1 [y (h∗(t))]

]
−
∫ b

a
q3 (t, s) φα(s)

[
φ−1
γ1 [y (h∗(t))]

]
∆ζ (s) ≥ 0,

or {
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)
−A3(t)φγ2 [y (h∗ (t))]

−B3(t) [y (h∗ (t))]β̂ − [y (h∗ (t))]λ̂
∫ b

a
q3 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≥ 0.

(2.12)

where y(t) = −x[1] (t) > 0 for t ∈ [T1,∞)T. Then, from (2.7) with q1 is
replaced by q3, we have∫ b

a
q3 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≥ C3(t). (2.13)

Then, from (2.12) and (2.13), we get{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)
−A3(t)φγ2 [y (h∗ (t))]

−B3(t)yβ̂ (h∗ (t))− C3(t)yλ̂ (h∗ (t)) ≥ 0.

In view of (2.9), we get{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)
−Q3(t)φγ2 (y (h∗ (t))) ≥ 0,

which has an eventually positive solution y(t), which is a contradiction.

(IV)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

< 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

> 0 and
[
x[1] (t)

]∆
< 0 for t ≥ T1.
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Then for τ ≥ T1,

x (τ) ≥ x (τ)− x (T1)

=

∫ τ

T1

φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

≥ φ−1
γ1

[
x[1] (τ)

] ∫ τ

T1

r
− 1
γ1

1 (u) ∆u

= φ−1
γ1

[
x[1] (τ)

]
R (τ, T1) .

From this and equation (1.4), we have{
r2 (t)φγ2

([
x[1](t)

]∆
)}∆

+ p(t)φγ2

([
x[1](t)

]∆σ
)

= −A(t)φγ (x(h1 (t)))−B(t)φβ (x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (x(h (t, s))) ∆ζ (s)

≤ −A4(t)φγ

[
φ−1
γ1

[
x[1] (h1(t))

]]
−B4(t)φβ

[
φ−1
γ1

[
x[1] (h2(t))

]]
−
∫ b

a
q4 (t, s) φα(s)

[
φ−1
γ1

[
x[1] (h (t, s))

]]
∆ζ (s) ,

which yields{
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)

+A4(t)φγ
[
φ−1
γ1 [y (h2(t))]

]
+B4(t)φβ

[
φ−1
γ1 [y (h2(t))]

]
+

∫ b

a
q4 (t, s)φα(s)

[
φ−1
γ1 [y (h (t, s))]

]
∆ζ (s) ≤ 0,

where y(t) = x[1] (t) > 0 for t ∈ [T1,∞)T. By using the fact that y is
decreasing on [T1,∞)T, we get{

r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)

+A4(t)φγ
[
φ−1
γ1 [y (h∗(t))]

]
+B4(t)φβ

[
φ−1
γ1 [y (h∗(t))]

]
+

∫ b

a
q4 (t, s)φα(s)

[
φ−1
γ1 [y (h∗ (t))]

]
∆ζ (s) ≤ 0,

or {
r2 (t)φγ2

(
[y(t)]∆

)}∆
+ p(t)φγ2

(
[y(t)]∆

σ
)

+A4(t)φγ2 [y (h∗(t))]

+B4(t)yβ̂ (h∗(t)) + yλ̂ (h∗ (t))

∫ b

a
q4 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≤ 0.

(2.14)
Again, from (2.7) with q1 replaced by q4, we have∫ b

a
q4 (t, s) [y (h∗ (t))]

α(s)
γ1
−λ̂

∆ζ (s) ≥ C4(t).
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Then {
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)

+A4(t)φγ2 [y (h∗(t))]

+B4(t)yβ̂ (h∗(t)) + C4(t)yλ̂ (h∗ (t)) ≤ 0,

which yields, from inequality (2.9),{
r2 (t)φγ2

(
y∆(t)

)}∆
+ p(t)φγ2

(
y∆σ

(t)
)

+Q4(t)φγ2 (y (h∗ (t))) ≤ 0

which has an eventually positive solution y(t), which is a contradiction. This
completes the proof. �

Next, we will reduce the equation (1.4) with p ≡ 0 to the following first
order linear dynamic equation[

x[2](t)
]∆

+ f(t, x(t)) = 0. (2.15)

Then we use first order dynamic inequalities in order to obtain oscillatory
solutions for equation (2.15). For simplicity, we will use the following nota-
tions: for any T1 ∈ [T,∞)T,

Ā1(t) := A(t)Rγ1 (h1(t), T1) , B̄1(t) := B(t)Rβ1 (h2(t), T1)

q̄1 (t, s) := q(t, s)R
α(s)
1 (h(t, s), T1) ;

Ā2(t) := A(t)Rγ2 (h1 (t) , h∗(t)) , B̄2(t) := B(t)Rβ2 (h2 (t) , h∗(t))

q̄2 (t, s) := q(t, s)R
α(s)
2 (h (t, s) , h∗(t)) ;

Ā3(t) := A(t)Rγ3(h1 (t) , h̄ (t)), B̄3(t) := B(t)Rβ3 (h2 (t) , h̄ (t))

q̄3 (t, s) := q (t, s)R
α(s)
3 (h (t, s) , h̄ (t));

Ā4(t) := A(t)Rγ4(h1(t), T1), B̄4(t) := B(t)Rβ4 (h2(t), T1),

q̄4 (t, s) := q (t, s)R
α(s)
4 (h(t, s), T1)

where h̄ is a function such that h̄(t) ≥ h∗(t) for t ∈ [T,∞)T and

R1 (τ, T1) :=

∫ τ

T1

[
1

r1 (v)

∫ v

T1

r
− 1
γ2

2 (u) ∆u

] 1
γ1

∆v;

R2 (τ, h∗(t)) :=

∫ ∞
τ

r
− 1
γ1

1 (u) ∆u

[∫ τ

h∗(t)
r
− 1
γ2

2 (u) ∆u

] 1
γ1

;

R3(τ, h̄ (t)) :=

∫ h∗(t)

τ
r
− 1
γ1

1 (u) ∆u

[∫ h̄(t)

h∗(t)
r
− 1
γ2

2 (u) ∆u

] 1
γ1

;

R4(τ, T1) :=

∫ τ

T1

r
− 1
γ1

1 (u) ∆u

[∫ ∞
τ

r
− 1
γ2

2 (u) ∆u

] 1
γ1

,

and where

C̄i(t) := exp

(∫ b

a
η(s) ln

[
q̄i (t, s)

η(s)

]
∆ζ(s)

)
, i = 1, 2, 3, 4.
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Theorem 2.2. If the first order dynamic inequalities

z∆(t) + Q̄1(t)z(h∗ (t)) ≤ 0; (2.16)

z∆(t)− Q̄2(t)z (h∗(t)) ≥ 0; (2.17)

z∆(t) + Q̄3(t)z
(
h̄(t)

)
≤ 0; (2.18)

and

z∆(t)− Q̄4(t)z (h∗(t)) ≥ 0, (2.19)

where

Q̄i(t) := Āi(t) + δ̄B̄
(1−λ̄)/(β̄−λ̄)
i C̄

(β̄−1)/(β̄−λ̄)
i , i = 1, 2, 3, 4, (2.20)

with β̄ := β
γ , λ̄ := λ

γ and

δ̄ := (β̄ − λ̄)(β̄ − 1)(1−β̄)/(β̄−λ̄)(1− λ̄)(λ̄−1)/(β̄−λ̄),

have no eventually positive solutions, then equation (2.15) is oscillatory.

Proof. Assume (2.15) has a nonoscillatory solution x on [t0,∞)T. Then,
without loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such
that x(t) > 0, x(hi(t)) > 0 on [T,∞)T, i = 1, 2, and x (h (t, s)) > 0

on [T,∞)T× [a, b]T̂. As seen in the proof of Theorem 2.1, we have x[2](t)
is nonincreasing on [T,∞)T. Notice that e p

rσ
(t, t0) disappears since p ≡ 0,

and also
[
x[0]
]∆

and
[
x[1]
]∆

are eventually of one sign. Therefore, we con-
sider the following cases:

(I)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

> 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

> 0 and
[
x[1] (t)

]∆
> 0 for t ≥ T1.

Then for τ ≥ T1

x[1] (τ) ≥ x[1] (τ)− x[1] (T1) =

∫ τ

T1

(
x[1] (u)

)∆
∆u

=

∫ τ

T1

φ−1
γ2

[
x[2] (u)

]
r
− 1
γ2

2 (u) ∆u

≥ φ−1
γ2

[
x[2] (τ)

] ∫ τ

T1

r
− 1
γ2

2 (u) ∆u.

Hence,

x∆(τ) ≥ φ−1
γ

[
x[2] (τ)

] [ 1

r1 (τ)

∫ τ

T1

r
− 1
γ2

2 (u) ∆u

] 1
γ1

.

Similarly, we see

x(τ) ≥ φ−1
γ

[
x[2] (τ)

] ∫ τ

T1

[
1

r1 (v)

∫ v

T1

r
− 1
γ2

2 (u) ∆u

] 1
γ1

∆v

= φ−1
γ

[
x[2] (τ)

]
R1 (τ, T1) .
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Let for sufficiently large T2 ∈ [T1,∞)T such that hi(t) ≥ T1, i = 1, 2 and
h(t, s) ≥ T1 for t ≥ T2 and s ∈ [a, b]T̂. Then for t ≥ T2,

x(hi (t)) ≥ φ−1
γ

[
x[2] (hi (t))

]
R1 (hi(t), T1) , i = 1, 2,

and

x(h (t, s)) ≥ φ−1
γ

[
x[2] (h (t, s))

]
R1 (h(t, s), T1) .

By using (2.15), we get[
x[2](t)

]∆
= −A(t)φγ (x(h1 (t)))−B(t)φβ (x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (x(h (t, s))) ∆ζ (s)

≤ −Ā1(t)x[2] (h1 (t))− B̄1(t)φβ

[
φ−1
γ

[
x[2] (h2 (t))

]]
−
∫ b

a
q̄1 (t, s)φα(s)

[
φ−1
γ

[
x[2] (h (t, s))

]]
∆ζ (s)

≤ −Ā1(t)x[2] (h∗ (t))− B̄1(t)φβ

[
φ−1
γ

[
x[2] (h∗ (t))

]]
−
∫ b

a
q̄1 (t, s)φα(s)

[
φ−1
γ

[
x[2] (h∗ (t))

]]
∆ζ (s) ,

which yields

z∆(t) + Ā1(t)z(h∗ (t)) + B̄1(t)φβ
[
φ−1
γ [z(h∗ (t))]

]
+
∫ b
a q̄1 (t, s) φα(s)

[
φ−1
γ [z (h∗ (t))]

]
∆ζ (s) ≤ 0,

where z(t) = x[2] (t) > 0 for t ∈ [T2,∞)T. As seen in the proof of Theorem
2.1, we obtain∫ b

a
q̄1 (t, s) [z (h∗ (t))]

α(s)
γ
−λ̄

∆ζ (s) ≥ exp

(∫ b

a
η(s) ln

[
q̄1 (t, s)

η(s)

]
∆ζ(s)

)
= C̄1(t). (2.21)

Then

z∆(t) + Ā1(t)z(h∗ (t)) + B̄1(t)zβ̄(h∗ (t)) + C̄1(t)zλ̄ (h∗ (t)) ≤ 0. (2.22)

By using inequality (2.9), we get for β̄ > 1 > λ̄ > 0,

B̄1(t)zβ̄−1(h∗ (t)) + C̄1(t)zλ̄−1 (h∗ (t)) ≥ δ̄B̄(1−λ̄)/(β̄−λ̄)
1 C̄

(β̄−1)/(β̄−λ̄)
1 .

Therefore (2.22) becomes

z∆(t) + Q̄1(t)z(h∗ (t)) ≤ 0 for t ∈ [T2,∞)T.

We have shown that the above inequality has an eventually positive solution,
which is a contradiction.
(II)

[
x[0]
]∆

< 0 and
[
x[1]
]∆

< 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

< 0 and
[
x[1] (t)

]∆
< 0 for t ≥ T1.
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Then for τ ≥ T1, we have

−x (τ) ≤
∫ ∞
τ

x∆ (u) ∆u

=

∫ ∞
τ

φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

< φ−1
γ1

[
x[1] (τ)

] ∫ ∞
τ

r
− 1
γ1

1 (u) ∆u. (2.23)

Also for τ ≥ h∗(t),

x[1] (τ) ≤ x[1] (τ)− x[1] (h∗(t))

=

∫ τ

h∗(t)
φ−1
γ2

[
x[2] (u)

]
r
− 1
γ2

2 (u) ∆u

≤ φ−1
γ2

[
x[2] (h∗(t))

] ∫ τ

h∗(t)
r
− 1
γ2

2 (u) ∆u. (2.24)

By (2.23) and (2.24), we find

−x (τ) ≤ φ−1
γ

[
x[2] (h∗(t))

] ∫ ∞
τ

r
− 1
γ1

1 (u) ∆u

[∫ τ

h∗(t)
r
− 1
γ2

2 (u) ∆u

] 1
γ1

= φ−1
γ

[
x[2] (h∗(t))

]
R2 (τ, h∗(t)) .

From this and equation (2.15), we have[
−x[2](t)

]∆
= −A(t)φγ (−x(h1 (t)))−B(t)φβ (−x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (−x(h (t, s))) ∆ζ (s)

≥ −Ā2(t)x[2] (h∗ (t))− B̄2(t)φβ

[
φ−1
γ

[
x[2] (h∗ (t))

]]
−
∫ b

a
q̄2 (t, s)φα(s)

[
φ−1
γ

[
x[2] (h∗ (t))

]]
∆ζ (s)

= Ā2(t)
(
−x[2] (h∗ (t))

)
+ B̄2(t)φβ

[
φ−1
γ

[
−x[2] (h∗ (t))

]]
+

∫ b

a
q̄2 (t, s)φα(s)

[
φ−1
γ

[
−x[2] (h∗ (t))

]]
∆ζ (s) ,

which yields

z∆(t)− Ā2(t)z (h∗(t))− B̄2(t)φβ
[
φ−1
γ [z (h∗ (t))]

]
−
∫ b
a q̄2 (t, s)φα(s)

[
φ−1
γ [z (h∗ (t))]

]
∆ζ ≥ 0,
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where z(t) = −x[2] (t) > 0 for t ∈ [T1,∞)T. As shown in the proof of
Theorem 2.1, we have∫ b

a
q̄2 (t, s) [z (h∗ (t))]

α(s)
γ
−λ̄

∆ζ (s) ≥ exp

(∫ b

a
η(s) ln

[
q̄2 (t, s)

η(s)

]
∆ζ(s)

)
= C̄2(t),

and so

z∆(t)− Ā2(t)z (h∗(t))− B̄2(t)zβ̄(h∗ (t))− C̄2(t)zλ̄ (h∗ (t)) ≥ 0.

By using the inequality (2.9), we get

z∆(t)− Q̄2(t)z (h∗(t)) ≥ 0,

where z(t) is a positive solution of the above inequality, which is a contra-
diction.
(III)

[
x[0]
]∆

< 0 and
[
x[1]
]∆

> 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

< 0 and
[
x[1] (t)

]∆
> 0 for t ≥ T1.

Then for τ ≤ h∗(t),

−x (τ) ≤ x (h∗(t))− x (τ)

=

∫ h∗(t)

τ
φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

≤ φ−1
γ1

[
x[1] (h∗(t))

] ∫ h∗(t)

τ
r
− 1
γ1

1 (u) ∆u. (2.25)

Also

−x[1] (h∗(t)) > x[1]
(
h̄ (t)

)
− x[1] (h∗(t))

=

∫ h̄(t)

h∗(t)
φ−1
γ2

[
x[2] (u)

]
r
− 1
γ2

2 (u) ∆u

≥ φ−1
γ2

[
x[2]

(
h̄ (t)

)] ∫ h̄(t)

h∗(t)
r
− 1
γ2

2 (u) ∆u. (2.26)

By (2.25) and (2.26), we find

x (τ) > φ−1
γ

[
x[2]

(
h̄ (t)

)] ∫ h∗(t)

τ
r
− 1
γ1

1 (u) ∆u

[∫ h̄(t)

h∗(t)
r
− 1
γ2

2 (u) ∆u

] 1
γ1

= φ−1
γ

[
x[2]

(
h̄ (t)

)]
R3(τ, h̄ (t)).
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From this and equation (2.15), we have[
x[2](t)

]∆
= −A(t)φγ (x(h1 (t)))−B(t)φβ (x(h2 (t)))

−
∫ b

a
q (t, s)φα(s) (x(h (t, s))) ∆ζ (s)

≤ −Ā3(t)x[2]
(
h̄ (t)

)
− B̄3(t)φβ

[
φ−1
γ

[
x[2]

(
h̄ (t)

)]]
−
∫ b

a
q̄3 (t, s)φα(s)

[
φ−1
γ

[
x[2]

(
h̄ (t)

)]]
∆ζ (s) ,

which yields

z∆(t) + Ā3(t)z
(
h̄ (t)

)
+ B̄3(t)φβ

[
φ−1
γ

[
z
(
h̄ (t)

)]]
+
∫ b
a q̄3 (t, s)φα(s)

[
φ−1
γ

[
z
(
h̄ (t)

)]]
∆ζ (s) ≤ 0,

where z(t) = x[2] (t) > 0 for t ∈ [T1,∞)T. As seen in the proof of Theorem
2.1, we have∫ b

a
q̄3 (t, s)

[
z
(
h̄ (t)

)]α(s)
γ
−λ̄

∆ζ (s) ≥ exp

(∫ b

a
η(s) ln

[
q̄3 (t, s)

η(s)

]
∆ζ(s)

)
= = C̄3(t),

which yields

z∆(t) + Ā3(t)z
(
h̄(t)

)
+ B̄3(t)zβ̄(h̄ (t)) + C̄3(t)zλ̄

(
h̄ (t)

)
≤ 0.

By using inequality (2.9), we get

z∆(t) + Q̄3(t)z
(
h̄(t)

)
≤ 0,

where z(t) is a positive solution of the above inequality, which is a contra-
diction.
(IV)

[
x[0]
]∆

> 0 and
[
x[1]
]∆

< 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

> 0 and
[
x[1] (t)

]∆
< 0 for t ≥ T1.

Then for τ ≥ T1,

x (τ) > x (τ)− x (T1)

=

∫ τ

T1

φ−1
γ1

[
x[1] (u)

]
r
− 1
γ1

1 (u) ∆u

> φ−1
γ1

[
x[1] (τ)

] ∫ τ

T1

r
− 1
γ1

1 (u) ∆u. (2.27)
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Also

−x[1] (τ) ≤
∫ ∞
τ

(
x[1] (u)

)∆
∆u

=

∫ ∞
τ

φ−1
γ2

[
x[2] (u)

]
r
− 1
γ2

2 (u) ∆u

< φ−1
γ2

[
x[2] (τ)

] ∫ ∞
τ

r
− 1
γ2

2 (u) ∆u. (2.28)

By (2.27) and (2.28), we find

x (τ) > −φ−1
γ

[
x[2] (τ)

] ∫ τ

T1

r
− 1
γ1

1 (u) ∆u

[∫ ∞
τ

r
− 1
γ2

2 (u) ∆u

] 1
γ1

= −φ−1
γ

[
x[2] (τ)

]
R4(τ, T1).

Let for sufficiently large T2 ∈ [T1,∞)T such that hi(t) ≥ T1, i = 1, 2 and
h(t, s) ≥ T1 for t ≥ T2 and s ∈ [a, b]T̂. From this and equation (2.15), we
have [

−x[2](t)
]∆

= A(t)φγ (x(h1 (t))) +B(t)φβ (x(h2 (t)))

+

∫ b

a
q (t, s)φα(s) (x(h (t, s))) ∆ζ (s)

≥ −Ā4(t)x[2] (h1 (t)) + B̄4(t)φβ

[
φ−1
γ

[
−x[2] (h2 (t))

]]
+

∫ b

a
q̄4 (t, s)φα(s)

[
φ−1
γ

[
−x[2] (h (t, s))

]]
∆ζ (s)

≥ −Ā4(t)x[2] (h∗ (t)) + B̄4(t)φβ

[
φ−1
γ

[
−x[2] (h∗ (t))

]]
+

∫ b

a
q̄4 (t, s)φα(s)

[
φ−1
γ

[
−x[2] (h∗ (t))

]]
∆ζ (s) ,

which yields

z∆(t)− Ā4(t)z (h∗ (t))− B̄4(t)φβ
[
φ−1
γ [z (h∗ (t))]

]
−
∫ b
a q̄4 (t, s)φα(s)

[
φ−1
γ [z (h∗ (t))]

]
∆ζ (s) ≥ 0,

where z(t) = −x[2] (t) > 0 for t ∈ [T2,∞)T. Again as shown in the proof of
Theorem 2.1, we have∫ b

a
q̄4 (t, s) [z (h∗ (t))]

α(s)
γ
−λ̄

∆ζ (s) ≥ exp

(∫ b

a
η(s) ln

[
q̄4 (t, s)

η(s)

]
∆ζ(s)

)
= C̄4(t),

which implies

z∆(t)− Ā4(t)z (h∗(t))− B̄4(t)φβ
[
φ−1
γ [z (h∗ (t))]

]
− C̄4(t)zλ̄ (h∗ (t)) ≥ 0.

By using the inequality (2.9), we get

z∆(t)− Q̄4(t)z (h∗(t)) ≥ 0,
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where z(t) is a solution of the above inequality, which is a contradiction.
This completes the proof. �

3. Applications

In this section, we highlight the importance of our main results obtained
in the previous section. The following results are new and solve an open
problem posed in [2, Remark 3.3] when h∗ (t) < t for t ≥ t0 ∈ T. In order
to do that we use Theorems 2.1 and 2.2 to obtain some different sufficient
oscillation criteria for equations (1.4) and (2.15), respectively.

Theorem 3.1. Let h∆
∗ (t) > 0 and h∗ (t) < t for t ≥ t0 ∈ T. Assume that∫ ∞

T
Q1(u)∆u =∞, (3.1)

∫ ∞
T

{
1

r1(w)

∫ w

T

[
1

r̂2 (v)

∫ v

T
Q̂2(u)∆u

]1/γ2

∆v

}1/γ1

∆w =∞, (3.2)

lim sup
t→∞

∫ t

h∗(t)
Q̂3(u)

(∫ h∗(t)

h∗(u)

∆v

r̂
1/γ2
2 (v)

)γ2
∆u > 1, (3.3)

and ∫ ∞
T

[
1

r̂2(w)

∫ w

T
r̄γ2(v)Q̂4(v)∆v

]1/γ2

∆w =∞, (3.4)

for sufficiently large T ∈ [t0,∞)T, where

r̄(v) :=

∫ ∞
h∗(v)

∆u

r̂
1/γ2
2 (u)

with r̂2(u) := r2(u)e p
rσ2

(u, t0),

and

Q̂i(u) := Qi(u)e p
rσ2

(u, t0) for i = 2, 3, 4.

Then equation (1.4) is oscillatory.

Proof. Assume (1.4) has a nonoscillatory solution x on [t0,∞)T. Then, with-
out loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such that
x(t) > 0, x(hi(t)) > 0 on [T,∞)T, i = 1, 2, and x (h (t, s)) > 0 on

[T,∞)T× [a, b]T̂. As shown in the proof of Theorem 2.1 we have x[2] is even-

tually of one sign. Therefore
[
x[0]
]∆

and
[
x[1]
]∆

are eventually of one sign.
Therefore, we consider the following cases:

(I)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

> 0 eventually. As seen in the proof of Theorem
2.1 we obtain that the second order dynamic inequality (2.2) has a positive

solution y(t) = x[1] (t) > 0 on [T1,∞)T for sufficiently large T1 ∈ [T,∞)T.
Pick T2 ≥ T1 such that h∗(t) ≥ T1 for t ≥ T2. Then by using the fact
y∆(t) > 0 on [T1,∞)T, then y(h∗(t)) > y(T1) for t ≥ T2 and then

φγ2 (y (h∗ (t))) > φγ2 (y(T1)) =: L > 0.
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Inequality (2.2) becomes

−
{
r2 (t)φγ2

(
y∆(t)

)}∆ ≥ p(t)φγ2
(
y∆σ

(t)
)

+Q1(t)φγ2 (y (h∗ (t)))

≥ LQ1(t). (3.5)

Replacing t by u in (3.5), and integrating (3.5) from T2 to t ∈ [T2,∞)T we
obtain

−r2 (t)φγ2
(
y∆(t)

)
+ r2 (T2)φγ2

(
y∆(T2)

)
≥ L

∫ t

T2

Q1(u)∆u.

Hence by (3.1) we have lim
t→∞

r2 (t)φγ2
(
y∆(t)

)
= −∞, which contradicts the

fact that y∆(t) > 0 eventually. This completes the proof of this case.

(II)
[
x[0]
]∆

< 0 and
[
x[1]
]∆

< 0 eventually. As seen in the proof of Theorem
2.1 we obtain that dynamic inequality (2.3) has a positive solution y(t) =

−x[1] (t) > 0 on [T1,∞)T for sufficiently large T1 ∈ [T,∞)T. Therefore (2.3)
can be written as{

r̂2 (t)φγ2
(
y∆(t)

)}∆ − Q̂2(t)φγ2 (y (h∗ (t))) ≥ 0. (3.6)

Pick T2 ≥ T1 such that h∗(t) ≥ T1 for t ≥ T2. Then by using the fact
y∆(t) > 0 on [T1,∞)T, then y(h∗(t)) > y(T1) for t ≥ T2 and then

φγ2 (y (h∗ (t))) > φγ2 (y(T1)) =: L > 0.

Inequality (3.6) becomes{
r̂2 (t)φγ2

(
y∆(t)

)}∆ ≥ Q̂2(t)φγ2 (y (h∗ (t))) ≥ LQ̂2(t). (3.7)

Replacing t by u in (3.7), and integrating (3.7) from T2 to t ∈ [T2,∞)T we
see that

r̂2 (t)φγ2
(
y∆(t)

)
≥ r̂2 (t)φγ2

(
y∆(t)

)
− r̂2 (T2)φγ2

(
y∆(T2)

)
≥ L

∫ t

T2

Q̂2(u)∆u,

which implies that

y∆(t) ≥ L1/γ2

[
1

r̂2 (t)

∫ t

T2

Q̂2(u)∆u

]1/γ2

.

Again, integrating the above inequality from T2 to t we obtain

y(t) ≥ y(t)− y(T2) ≥ L1/γ2

∫ t

T2

[
1

r̂2 (v)

∫ v

T2

Q̂2(u)∆u

]1/γ2

∆v,

which yields

x(T2)−x(t) ≥ L1/γ1γ2

∫ t

T2

{
1

r1(w)

∫ w

T2

[
1

r̂2 (v)

∫ v

T2

Q̂2(u)∆u

]1/γ2

∆v

}1/γ1

∆w.

Hence by (3.2) we have lim
t→∞

x(t) = −∞, which contradicts the fact that

x(t) > 0 eventually. This completes the proof of this case.
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(III)
[
x[0]
]∆

< 0 and
[
x[1]
]∆

> 0 eventually. As seen in the proof of Theorem
2.1 we obtain that dynamic inequality (2.4) has a positive solution y(t) =

−x[1] (t) > 0 on [T1,∞)T for sufficiently large T1 ∈ [T,∞)T. Therefore (2.4)
can be written as{

r̂2 (t)φγ2
(
y∆(t)

)}∆ − Q̂3(t)φγ2 (y (h∗ (t))) ≥ 0. (3.8)

For t ≥ u ≥ T1, we have

y (h∗ (u)) ≥ y (h∗ (u))− y (h∗ (t)) = −
∫ h∗(t)

h∗(u)
y∆(v)∆v

= −
∫ h∗(t)

h∗(u)

{
r̂2 (v)φγ2

(
y∆(v)

)}1/γ2

r̂
1/γ2
2 (v)

∆v

≥ −
{
r̂2 (h∗ (t))φγ2

(
y∆(h∗ (t))

)}1/γ2
∫ h∗(t)

h∗(u)

∆v

r̂
1/γ2
2 (v)

.(3.9)

Integrating the inequality (3.8) from h∗ (t) ≥ T1 to t, we obtain

−r̂2 (h∗ (t))φγ2
(
y∆(h∗ (t))

)
≥ r̂2 (t)φγ2

(
y∆(t)

)
− r̂2 (h∗ (t))φγ2

(
y∆(h∗ (t))

)
≥

∫ t

h∗(t)
Q̂3(u)φγ2 (y (h∗ (u))) ∆u. (3.10)

Using (3.9) in (3.10), one can easily see that

−r̂2 (h∗ (t))φγ2
(
y∆(h∗ (t))

)
≥ −

{
r̂2 (h∗ (t))φγ2

(
y∆(h∗ (t))

)} ∫ t

h∗(t)
Q̂3(u)

(∫ h∗(t)

h∗(u)

∆v

r̂
1/γ2
2 (v)

)γ2
∆u,

or

1 ≥
∫ t

h∗(t)
Q̂3(u)

(∫ h∗(t)

h∗(u)

∆v

r̂
1/γ2
2 (v)

)γ2
∆u.

Taking the lim sup as t→∞ gives a contradiction to the condition (3.3).

(IV)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

< 0 eventually. Proceeding as in the proof
of Theorem 2.1 we have dynamic inequality (2.5) has a positive solution

y(t) = x[1] (t) > 0 on [T1,∞)T for sufficiently large T1 ∈ [T,∞)T. Therefore
(2.5) can be written as

{
r̂2 (t)φγ2

(
y∆(t)

)}∆
+ Q̂4(t)φγ2 (y (h∗ (t))) ≤ 0. (3.11)
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Pick T2 ≥ T1 such that h∗(t) ≥ T1 for t ≥ T2. Using the fact that r̂2 (t)φγ2
(
y∆(t)

)
is decreasing, we obtain

−y(h∗ (t)) < y (∞)− y(h∗ (t)) =

∫ ∞
h∗(t)

(r̂2 (u)φγ2
(
y∆(u)

)
)1/γ2

r̂
1/γ2
2 (u)

∆u

≤ (r̂2 (h∗ (t))φγ2
(
y∆(h∗ (t))

)
)1/γ2

∫ ∞
h∗(t)

∆u

r̂
1/γ2
2 (u)

≤ (r̂2 (T1)φγ2
(
y∆(T1)

)
)1/γ2

∫ ∞
h∗(t)

∆u

r̂
1/γ2
2 (u)

= L r̄(t),

where L := (r̂2 (T1)φγ2
(
y∆(T1)

)
)1/γ2 < 0. From (3.11), we get for t ≥ T2,{

r̂2 (t)φγ2
(
y∆(t)

)}∆ ≤ −Q̂4(t)φγ2 (y (h∗ (t))) ≤ Lγ2 r̄γ2(t)Q̂4(t).

Hence, for t ≥ T2, we have

r̂2 (t)φγ2
(
y∆(t)

)
≤ r̂2 (t)φγ2

(
y∆(t)

)
− r̂2 (T2)φγ2

(
y∆(T2)

)
≤ Lγ2

∫ t

T2

r̄γ2(u)Q̂4(u)∆u

≤ Lγ2
∫ t

T2

r̄γ2(u)Q̂4(u)∆u.

It follows from this last inequality that

y(t)− y(T2) ≤ Lγ2/γ1
∫ t

T2

[
1

r̂2(v)

∫ v

T2

r̄γ2(u)Q̂4(u)∆u

]1/γ2

∆v.

Hence by (3.4), we have lim
t→∞

y(t) = −∞, which contradicts the fact that y

is a positive solution of (2.5). This completes the proof. �

The next theorem we apply Theorem 2.2 and then apply the main results
of [5, 33].

Theorem 3.2. Let h∗(t) < t and h̄(t) < t for t ≥ t0 ∈ T. Assume (3.2)
and the following conditions hold:

lim sup
t→∞

sup
λ̃∈E1

{λ̃e−λ̃Q̄1
(t, h∗(t))} < 1, (3.12)

lim sup
t→∞

sup
λ̃∈E2

{λ̃e−λ̃Q̄3
(t, h̄(t))} < 1, (3.13)

and ∫ ∞
T

[
1

r2 (v)

∫ v

T
Q̄4(u)∆u

]1/γ2

∆v =∞, (3.14)

for sufficiently large T ∈ [t0,∞)T, where

eQ̄(t, s) = exp

∫ t

s
ξµ(u)

(
Q̄(u)

)
∆u,

Ei = {λ̃ : λ̃ > 0, 1− λ̃Q̄i(t)µ(t) > 0, t ∈ T},
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and

ξµ
(
Q̄
)

=


log
(
1 + µQ̄

)
µ

if µ 6= 0,

Q̄, if µ = 0.

Then equation (2.15) is oscillatory.

Proof. Assume (2.15) has a nonoscillatory solution x on [t0,∞)T. Then,
without loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such
that x(t) > 0, x(hi(t)) > 0 on [T,∞)T, i = 1, 2, and x (h (t, s)) > 0

on [T,∞)T× [a, b]T̂. As seen in the proof of Theorem 2.2, we have x[2](t)

is nonincreasing on [T,∞)T and also
[
x[0]
]∆

and
[
x[1]
]∆

are eventually of
one sign. Therefore, we consider the following cases:

(I)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

> 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

> 0 and
[
x[1] (t)

]∆
> 0 for t ≥ T1.

Proceeding as in the proof of Theorem 2.2 we have that dynamic inequality
(2.16) has a positive solution z(t) = x[2] (t) > 0 on [T2,∞)T for sufficiently
large T2 ∈ [T1,∞)T. Then, by [33, Corollary 2] (or [5]), we get a contradic-
tion to (3.12).

(II)
[
x[0]
]∆

< 0 and
[
x[1]
]∆

< 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

< 0 and
[
x[1] (t)

]∆
< 0 for t ≥ T1.

As seen in the proof of Theorem 2.2 we get that dynamic inequality (2.17)

has a positive solution z(t) = −x[2] (t) > 0 for t ∈ [T1,∞)T. Pick T2 ≥ T1

such that h∗(t) ≥ T1 for t ≥ T2. Then by using the fact that z∆(t) > 0 on
[T1,∞)T, we have z(h∗(t)) > z(T1) for t ≥ T2 and then

z (h∗ (t)) > z(T1) =: L > 0.

Inequality (2.17) becomes

z∆(t) ≥ Q̄2(t)z (h∗(t)) ≥ L Q̄2(t).

Then the same argument as in the proof of (II) of Theorem 3.1 leads to a
contradiction to the assumption (3.2).

(III)
[
x[0]
]∆

< 0 and
[
x[1]
]∆

> 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

< 0 and
[
x[1] (t)

]∆
> 0 for t ≥ T1.

As shown in the proof of Theorem 2.2 we get that dynamic inequality (2.18)

z∆(t) + Q̄3(t)z
(
h̄(t)

)
≤ 0

has a positive solution z(t) = x[2] (t) > 0 for t ∈ [T1,∞)T. Then, by [33,
Corollary 2] (or [5]), we get a contradiction to (3.13).
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(IV)
[
x[0]
]∆

> 0 and
[
x[1]
]∆

< 0 eventually. Then there exists T1 ≥ T such
that [

x[0](t)
]∆

> 0 and
[
x[1] (t)

]∆
< 0 for t ≥ T1.

Proceeding as in the proof of Theorem 2.2 we have that dynamic inequality
(2.19)

z∆(t)− Q̄4(t)z (h∗(t)) ≥ 0,

has a positive solution z(t) = −x[2] (t) > 0 for t ∈ [T2,∞)T for sufficiently
large T2 ∈ [T1,∞)T. Pick T2 ≥ T1 such that h∗(t) ≥ T1 for t ≥ T2. Then
by using the fact that z∆(t) > 0 on [T1,∞)T, we have z(h∗(t)) > z(T1) for
t ≥ T2 and then

z (h∗ (t)) > z(T1) =: L > 0.

Inequality (2.19) becomes

z∆(t) ≥ Q̄4(t)z (h∗(t)) ≥ L Q̄4(t). (3.15)

Replacing t by u in (3.15), and integrating from T2 to t ∈ [T2,∞)T we see
that

z(t) ≥ z(t)− z(T2) ≥ L
∫ t

T2

Q̄4(u)∆u,

which implies that

−
[
x[1](t)

]∆
≥ L1/γ2

[
1

r2 (t)

∫ t

T2

Q̄4(u)∆u

]1/γ2

.

Again, integrating the above inequality from T2 to t we obtain

−x[1](t) + x[1](T2) ≥ L1/γ2

∫ t

T2

[
1

r2 (v)

∫ v

T2

Q̄4(u)∆u

]1/γ2

∆v.

Hence by (3.14) we have lim
t→∞

x[1](t) = −∞, which contradicts the fact that

x[1](t) > 0 eventually. This completes the proof. �

4. General Remarks

(1) The results here are valid for various type of time scales, e.g., T = R,
T = Z, T = hZ with h > 0, T = qN0 with q > 1, T = N2

0, etc.
(see [7]).

(2) The results of this paper are presented in a form that is essentially
new and of a high degree of generality.

(3) We note that there are many criteria in the literature of first and
second order dynamic equations and so by applying these results to
inequalities (2.2)–(2.5), (2.16)–(2.19), we can obtain many oscillation
results, more that those known in the literature. Here we omit the
details.
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(4) We note that our results on the asymptotic behavior of solutions are
applicable to equations (1.4) and (2.15) for all h∗(t), h∗(t) and h̄(t)
while the oscillation results are applicable to equations (1.4) and
(2.15) if h∗(t) < t, h∗(t) < t and h̄(t) < t. Thus, as it is known, it is
the delay in equations (1.4) and (2.15) that can generate oscillations.

Acknowledgement. The authors would like to thank the referee for many
helpful suggestions.
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