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1 Introduction

This paper is concerned with some oscillatory behavior of solutions of second-
order nonlinear dynamic inclusions of the form

(p(t)x∆(t))∆ ∈ F (t, xσ(t)) a.e. t ≥ t0, (1)

subject to the following hypotheses:

(H1) p ∈ Crd([t0,∞)T,R+) such that

A(t) :=
∫ ∞

t

∆s

p(s)
< ∞, t ≥ t0.

(H2) F : [t0,∞)T × R→ 2R \ ∅ is a multifunction with compact and convex
values such that |F (., u)| = sup{|y| : y ∈ F (t, u)} and F (t, u) > 0
means y > 0 for each y ∈ F (t, u).
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(H3)

F (t, u) < 0 for (t, u) ∈ [t0,∞)T × R+,

F (t, u) > 0 for (t, u) ∈ [t0,∞)T × R−.

Dynamic inclusions represent an important generalization of dynamic
equations. The solution to a dynamic inclusion is a reachable set, instead
of a single trajectory. The solving procedure for dynamic inclusions is quite
complicated compared to the numerical methods for dynamic equations. The
algorithm is based on some concepts of the optimal control theory. Dynamic
inclusions arise in many situations including dynamic variational inequalities,
projected dynamical systems, dynamic Coulomb friction problems and fuzzy
set arithmetic. For example, the basic rule for Coulomb friction is that the
friction force has magnitude µN in the direction opposite to the direction of
slip, where N is the normal force and µ is a constant (the friction coefficient).
However, if the slip is zero, the friction force can be any force in the correct
plane with magnitude smaller than or equal to µN . Thus, writing the friction
force as a function of position and velocity leads to a set-valued function.

Oscillation problems in discrete and continuous cases have become very
popular recently. These areas have started to be unified and extended under
much more powerful general theory, so called time scales which are nonempty
subset of real numbers and denoted by T. The theory was initiated by Hilger
[9] in 1988. We will mention time scales calculus in the next section briefly.
Nevertheless, we recommend two excellent books by Bohner and Peterson
[5, 6] for more details.

The main purpose of this paper is to establish some oscillation criteria for
dynamic inclusion (1). Grace, Agarwal, and O’Regan [7] establish sufficient
conditions for the oscillation for second order differential inclusions

(p(t)x′(t))′ ∈ F (t, x(t)) for a.e. t ≥ t0,

only when A(t) = ∞. Results in this paper even are new in continuous case.
We earlier investigated oscillation criteria for (1) when A(t) = ∞ on time
scales, see [2]. Our arguments in this paper are related with papers by Grace,
Agarwal, Bohner and O’Regan [8], Merdivenci Atıcı and Biles [10], Bohner
and Tisdell [3], Akın-Bohner and Sun [1].

Throughout this paper we assume that T is unbounded above. Let
L1

loc([t0,∞)T,R) be the set of all real-valued locally ∆-integrable functions,
that is, the set of ∆- integrable over each compact interval of [t0,∞)T. By
a solution x of (1), we mean there exists a function y ∈ L1

loc([t0,∞)T,R)
such that y(t) ∈ F (t, xσ(t)) a.e. on [t0,∞)T and (p(t)x∆(t))∆ = y(t) a.e. on
[t0,∞)T. A solution x of (1) is called oscillatory if it is neither eventually pos-
itive nor eventually negative; otherwise it is called nonoscillatory. Inclusion
(1) is called oscillatory if all solutions are oscillatory.
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2 Preliminary Results

Two most popular examples of time scales are T = R and T = Z. Some other
interesting time scales exist, and they give rise to plenty of applications such
as the study of population dynamics model (see [8], pages 15 and 71). By a
time-scale interval we mean [t0, t1]T = {t ∈ T : t0 ≤ t ≤ t1}, where t0, t1 ∈ T
and other time-scale intervals are defined similarly. We define the forward
and backward jump operators σ, ρ : T→ T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}

(supplemented by inf ∅ = supT and sup ∅ = inf T). A point t ∈ T with
t > inf T is called right-scattered, right-dense, left-scattered and left-dense
if σ(t) > t, σ(t) = t, ρ(t) < t and ρ(t) = t holds, respectively. Points are
left-dense and right-dense at the same time are called dense. The set Tκ

is derived from T as follows: If T has a left-scattered maximum m, then
Tκ = T− {m}. Otherwise, Tκ = T. The graininess function µ : T→ [0,∞)
is defined by

µ(t) := σ(t)− t.

Hence the graininess function is 0 if T = R while it is 1 if T = Z. Let f be
a function defined on T, then we define the delta derivative of f at t ∈ Tκ,
denoted by f∆(t), to be the number (provided it exists) with the property
such that for every ε > 0, there exists a neighborhood U of t with

∣∣f(σ(t))− f(s)− f∆(t) [σ(t)− s]
∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

A function f : T → R is said to be rd-continuous if it is continuous at
each right-dense point and if there exists a finite left-sided limit at all left-
dense points. The set of rd-continuous functions f : T → R is denoted by
Crd(T,R). f is said to be (delta) differentiable if its derivative exists.

The derivative and the shift operator σ are related by the formula

fσ = f + µf∆.

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f

g of two differentiable functions
f and g

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f∆(t)gσ(t) + f(t)g∆(t),

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)gσ(t)
, where ggσ 6= 0.

For a, b ∈ T and a differentiable function f , the Cauchy integral of f∆ is
defined by ∫ b

a

f∆(t)∆t = f(b)− f(a).
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Other useful formulas are as follows:
σ(t)∫

t

f(s)∆s = µ(t)f(t),

b∫

a

f(t)g∆(t)∆t = f(b)g(b)− f(a)g(a)−
b∫

a

f∆(t)gσ(t)∆t.

The chain rule [8, Theorem 1.90]

(x1−λ)∆

1− λ
= x∆

∫ 1

0

[hxσ + (1− h)x]−λdh,

where λ > 0 and x is such that the right-hand side the above inequality is
well-defined, is crucial to prove the following lemma, see [5, Lemma 2.1].

Lemma 1. Suppose |x|∆ is of one sign on [t0,∞)T and λ > 0. Then

|x|∆
(|x|σ)λ

≤ (|x|1−λ)∆

1− λ
≤ |x|∆
|x|λ on [t0,∞)T.

3 Main Results

In this section, we investigate oscillatory behavior of dynamic inclusion (1).
According to the following classification, we will obtain oscillation criteria
for strongly superlinear and strongly sublinear dynamic inclusions.

Definition 1. Inclusion (1) (or F) is said to be strongly superlinear if
there exist a function f : [t0,∞)T × R 7→ R and a constant β > 1 such that
uf(t, u) > 0 for a.e. t ≥ t0, u 6= 0 satisfying

|F (t, u)| ≥ f(t, u) for (t, u) ∈ [t0,∞)T × R+

|F (t, u)| ≥ −f(t, u) for (t, u) ∈ [t0,∞)T × R−
and |f(t, x)|

|x|β ≤ |f(t, y)|
|y|β for |x| ≤ |y|, xy > 0, a.e. t ≥ t0, (2)

and it is said to be strongly sublinear if there exist a function f : [t0,∞)T×
R 7→ R and a constant 0 < γ < 1 such that uf(t, u) > 0 for a.e. t ≥ t0,
u 6= 0 satisfying

|F (t, u)| ≥ f(t, u) for (t, u) ∈ [t0,∞)T × R+

|F (t, u)| ≥ −f(t, u) for (t, u) ∈ [t0,∞)T × R−
and |f(t, x)|

|x|γ ≥ |f(t, y)|
|y|γ for |x| ≤ |y|, xy > 0, a.e. t ≥ t0. (3)
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If (2) holds when β = 1, then (1) is called superlinear while if (3) holds
when γ = 1, (1) is called sublinear.

The following lemma is very crucial and will be used several times.

Lemma 2. Suppose x solves (1) and is of one sign on [t0,∞)T. Then either

xx∆ ≥ 0 on [t0,∞)T (4)

or there exists t1 ≥ t0, t1 ∈ T such that

xx∆ ≤ 0 on [t1,∞)T. (5)

Moreover, assume that there exists a function f : [t0,∞)T × R 7→ R such
that uf(t, u) > 0 for a.e. t ≥ t0 and let

c̄ = {|x(t0)|+ p(t0)|x∆(t0)|A(t0)}sgnx(t0)

and

ĉ =

{
x(t0)
A(t0)

if (4) holds

p(t1)x∆(t1)sgnx(t0) if (5) holds .

Then
|x| ≤ |c̄| on [t0,∞)T, where c̄x > 0 (6)

and
|x| ≥ |ĉA| on [t0,∞)T, where ĉAx > 0. (7)

Proof. Assume that x solves (1) and x > 0 on [t0,∞)T. The case x < 0 can
be shown similarly. If (4) does not hold, then there exits t1 > t0, t1 ∈ T such
that x∆(t1) < 0. From (H2), we have

(p(t)x∆(t))∆ < 0 for t ≥ t0 (8)

and so
p(t)x∆(t) ≤ p(t1)x∆(t1) < 0 for t ≥ t1.

Therefore, x∆(t) < 0 for t ≥ t1. This proves (5).
Moreover, (8) also implies

p(t)x∆(t) ≤ p(t0)x∆(t0), t ≥ t0

or

x∆(t) ≤ p(t0)x∆(t0)
p(t)

, t ≥ t0.

Integrating the above inequality from t0 to t, t ≥ t0 we find

x(t) ≤ x(t0) + p(t0)x∆(t0)
∫ t

t0

∆s

p(s)
,
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and so

|x(t)| ≤ |x(t0)|+ p(t0)|x∆(t0)|
∫ t

t0

∆s

p(s)

≤ |x(t0)|+ p(t0)|x∆(t0)|A(t0). (9)

Denote
c̄ := x(t0) + p(t0)|x∆(t0)|A(t0). (10)

This proves (6).
In order to show (7) we consider two cases: If (4) holds, then

x(t) ≥ x(t0) = ĉA(t0) ≥ ĉA(t) for all t ≥ t0.

If (5) holds, then let
y(t) = (p(t)x∆(t))∆ (11)

and y(t) ∈ F (t, xσ(t)), y ∈ L1
loc([t0,∞)T,R). Integrating (11) from v to s,

v, s ≥ t0, v, s ∈ T we have

p(s)x∆(s) = p(v)x∆(v) +
∫ s

v

y(τ)∆τ

and so

x∆(s) =
p(v)x∆(v)

p(s)
+

1
p(s)

∫ s

v

y(τ)∆τ. (12)

Note that
−y(t) ≥ f(t, xσ(t)) for (t, x) ∈ [t0,∞)T × R+. (13)

Taking (13) into account in (12) and integrating (12) from t to u ∈ T, u ≥ t0
we have

x(u)− x(t) ≤ p(v)x∆(v)
∫ u

t

∆s

p(s)
−

∫ u

t

1
p(s)

∫ s

v

f(τ, xσ(τ))∆τ∆s (14)

or
x(t) ≥ −p(v)x∆(v)

∫ u

t

∆s

p(s)
+

∫ u

t

1
p(s)

∫ s

v

f(τ, xσ(τ))∆τ∆s.

Letting v = t1 and u →∞ yields

x(t) ≥ −p(t1)x∆(t1)
∫ ∞

t

∆s

p(s)
+

∫ ∞

t

1
p(s)

∫ s

t1

f(τ, xσ(τ))∆τ∆s

≥ −p(t1)x∆(t1)A(t)
:= ĉA(t),

which completes the proof.

In the following theorem we do not need to assume that (1) is strongly
superlinear or strongly sublinear.



Oscillation Criteria for Second Order Dynamic Inclusions 7

Theorem 3. In addition to conditions (H1)-(H3), assume

(H4) there exists a function f : [t0,∞)T × R 7→ R satisfying

f(t, x) ≤ f(t, y), x ≤ y, t ≥ t0.

If ∫ ∞

t0

1
p(s)

∫ s

t0

|f(τ, cAσ(τ))|∆τ∆s = ∞, (15)

for every nonzero constant c, then (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1) such that x > 0 on [t0,∞)T.
The case x < 0 can be shown similarly. From (7) and (H4), we obtain

f(τ, xσ(τ)) ≥ f(τ, ĉAσ(τ)) for all τ ≥ t0. (16)

Using (14) with u = v = t1 ≤ t and (16), we have

x(t) ≤ x(t1) + p(t1)x∆(t1)
∫ t

t1
∆s
p(s) −

∫ t

t1
1

p(s)

∫ s

t1
f(τ, xσ(τ))∆τ∆s (17)

≤ x(t1) + p(t1)x∆(t1)
∫ t

t1
∆s
p(s) −

∫ t

t1
1

p(s)

∫ s

t1
f(τ, ĉAσ(τ))∆τ∆s, (18)

which contradicts to the positivity of x by (15) as t →∞.

The following result is concerned with oscillatory behavior of inclusion
(1) when F is strongly superlinear, see (2).

Theorem 4. In addition to conditions (H1)-(H3), assume (1) is strongly
superlinear. If ∫ ∞

t0

|f(τ, cAσ(τ)|∆τ = ∞ (19)

for every nonzero constant c, then inclusion (1) is oscillatory.

Proof. Assume x is a nonoscillatory solution of (1) such that x > 0 on
[t0,∞)T. The case x < 0 can be shown similarly. Since (1) is strongly
superlinear and (7) holds, there exist a function f : [t0,∞)T × R 7→ R and a
constant β > 1 such that

f(τ, xσ(τ)
(xσ(τ))β

≥ f(τ, ĉAσ(τ))
(ĉAσ(τ))β

for all t ≥ t1 ≥ t0. (20)

Using (14) with t ≥ u ≥ t1 = v, we obtain

x(u) ≥ −p(t1)x∆(t1)
∫ t

u

∆s

p(s)
+

∫ t

u

1
p(s)

∫ u

t1

f(τ, xσ(τ))∆τ∆s (21)

≥ bA(u) + A(u)
∫ u

t1

f(τ, xσ(τ))∆τ (22)

≥ bA(u) + A(u)
∫ u

t1

f(τ, ĉAσ(τ))
(ĉAσ(τ))β

(xσ(τ))β∆τ, (23)
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where b := p(t1)|x∆(t1)| and we use (20) and so

x(u)
A(u)

≥ b + (ĉ)−β

∫ u

t1

f(τ, ĉAσ(τ))
(

xσ(τ)
Aσ(τ)

)β

∆τ := w(u).

By Lemma 2,

w∆(τ) = (ĉ)−βf(τ, ĉAσ(τ))
(

xσ(τ)
Aσ(τ)

)β

≥ (ĉ)−βf(τ, ĉAσ(τ)) (wσ(τ))β

and therefore we have

− (
w1−β

)∆
(τ) ≥ β − 1

(ĉ)β
f(τ, ĉAσ(τ)).

Integrating the above inequality from t1 to t ≥ t1, we obtain

(
w1−β

)
(t1) ≥ β − 1

(ĉ)β

∫ t

t1

f(τ, ĉAσ(τ))∆τ,

which contradicts with the way b is chosen as t →∞.

The following result is concerned with oscillatory behavior of inclusion
(1) when F is strongly sublinear, see (3).

Theorem 5. In addition to (H1)-(H4), assume that (1) is strongly sublinear.
If ∫ ∞

t0

1
p(s)

∫ s

t0

|f(τ, c)|∆τ∆s = ∞ (24)

for every nonzero constant c, then inclusion (1) is oscillatory.

Proof. Assume x is a nonoscillatory solution of (1) such that x > 0 on
[t0,∞)T. The case x < 0 can be shown similarly. By Lemma 2, either
(4) or (5) holds. If (4) holds, then we have

xσ(t) ≥ x(t) ≥ x(t0) for all t ≥ t0

and so by (14) with u = v = t0 ≤ and (H4)

x(t) ≤ x(t0) + p(t0)x∆(t0)
∫ t

t0

1
p(s)

−
∫ t

t0

1
p(s)

∫ s

t0

f(τ, x(t0))∆τ∆s,

which is a contradiction to the positivity of x as t → ∞. If (5) holds, then
by (6) and (3) with 0 < γ < 1 we have

f(τ, xσ(τ))
(xσ(τ))γ

≥ f(τ, c̄)
c̄γ

for all t ≥ t1. (25)
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By (12) with v = t1 ≤ t, (13), and (25), we have

x∆(t) =
p(t1)x∆(t1)

p(t)
+

1
p(t)

∫ t

t1

y(τ)∆τ

≤ − 1
p(t)

∫ t

t1

f(τ, xσ(τ))∆τ

≤ − 1
p(t)

∫ t

t1

(xσ(τ))γ
f(τ, c̄)

(c̄)γ
∆τ

≤ − (c̄)−γ

p(t)
xγ(t)

∫ t

t1

f(τ, c̄)∆τ.

Now from Lemma 1

(c̄)−γ

p(t)

∫ t

t1

f(τ, c̄)∆τ ≤ −x∆(t)
xγ(t)

≤ − (x1−γ)∆(t)
1− γ

.

Integrating the above inequality from t1 to t ≥ t1, we obtain

x1−γ(t1) ≥ x1−γ(t) +
1− γ

(c̄)γ

∫ t

t1

1
p(s)

∫ s

t1

f(τ, c̄)∆τ∆s

≥ 1− γ

(c̄)γ

∫ t

t1

1
p(s)

∫ s

t1

f(τ, c̄)∆τ∆s,

which is contradiction as t →∞ by (24).
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