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Abstract We introduce the exponential function for alpha derivatives on gen-

eralized time scales. We also define the Laplace transform that helps to solve

higher order linear alpha dynamic equations on generalized time scales. If

α = σ, the Hilger forward jump operator, then our theory contains the the-

ory of delta dynamic equations on time scales as a special case. If α = ρ,

the Hilger backward jump operator, then our theory contains the theory of

nabla dynamic equations on time scales as a special case. Hence differential

equations, difference equations (using the forward or backward difference op-

erator), or q-difference equations (using the forward or backward q-difference

operator) can be accommodated within our theory. We also present various

properties of the Laplace transform and offer some examples.
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1. Introduction

We consider generalized time scales (T, α) as introduced in [1], i.e., T ⊂ R

is a nonempty set such that every Cauchy sequence in T converges to a point

in T (with the possible exception of Cauchy sequences that converge to a

finite infimum or supremum of T), and α is a function that maps T into T. A
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function f : T → R is called alpha differentiable at a point t ∈ T if there exists

a number fα(t), the so-called alpha derivative of f at t, with the property

that for every ε > 0 there exists a neighborhood U of t such that

|f(α(t))− f(s)− fα(t)(α(t)− s)| ≤ ε|α(t)− s|

is true for all s ∈ U . If T is closed and α = σ, the Hilger forward jump

operator, then fα = f∆ is the usual delta derivative (see [4, 6, 7]), which

contains as special cases derivatives f ′ (if T = R) and differences ∆f (if

T = Z). If T is closed and α = ρ, the Hilger backward jump operator, then

fα = f∇ is the nabla derivative (see [3] and [4, Section 8.4]).

In this paper we consider linear alpha dynamic equations of the form

yα = p(t)y with 1 + p(t)µα(t) 6= 0,

where µα(t) = α(t)−t is the generalized graininess. If the initial value problem

yα = p(t)y, y(t0) = 1

has a unique solution, we denote it by ep(t, t0) and call it the generalized

exponential function. Note that ep also depends on α, but we choose not to

indicate this dependence as it should be clear from the context. The exponen-

tial function satisfies some properties, which are presented in the next section

of this paper. Similarly as in [5], the exponential function may be used to

define a generalized Laplace transform, which is helpful when solving higher

order linear alpha dynamic equations with constant coefficients. We illustrate

this technique with an example in the last section. This example features an

α which neither satisfies α(t) ≥ t for all t ∈ T nor α(t) ≤ t for all t ∈ T,

and hence this example can not be accommodated in the existing literature

on delta and nabla dynamic equations.



2. Alpha Derivatives, Exponentials, and Laplace Transforms

For a function f : T → R we denote by fα the alpha derivative as defined

in the introductory section, and we also put fα = f ◦ α. Then the following

rules (see [4, Section 8.3]) are valid:

• fα = f + µαfα;

• (fg)α = fgα + fαg
α (“Product Rule”);

•

(

f

g

)

α

=
fαg − fgα

ggα
(“Quotient Rule”).

We may use these rules to find

ep(α(t), t0) = eαp (t, t0) = ep(t, t0) + µα(t)p(t)ep(t, t0),

i.e.,

• ep(α(t), t0) = [1 + p(t)µα(t)] ep(t, t0),

by putting y(t) = ep(t, t0)eq(t, t0),

yα(t) = ep(t, t0)q(t)eq(t, t0) + p(t)ep(t, t0)eq(α(t), t0)

= [p(t) + q(t) + µα(t)p(t)q(t)] y(t),

i.e.,

• epeq = ep⊕q, where p⊕ q := p+ q + µαpq,

and by putting y = ep(t, t0)/eq(t, t0),

yα(t) =
p(t)ep(t, t0)eq(t, t0)− ep(t, t0)q(t)eq(t, t0)

eq(t, t0)eq(α(t), t0)

=
p(t)− q(t)

1 + µα(t)q(t)
y(t),

i.e.,

•
ep
eq

= epªq, where pª q :=
p− q

1 + µαq
.

Note also that ªq := 0 ª q = −q/(1 + µαq) satisfies q ⊕ (ªq) = 0 and that

pª q = p⊕ (ªq). Again, ⊕ and ª depend on α, but in order to avoid many

subscripts we choose not to indicate this dependence as it should be clear

from the context. We also remark that the set of alpha regressive functions

Rα = {p : T → R| 1 + p(t)µα(t) 6= 0 for all t ∈ T}



is an Abelian group under the addition ⊕, and ªp is the additive inverse of

p ∈ Rα.

Now, similarly as in [5], the Laplace transform for functions x : T → R

(from now on we assume that T is unbounded above and contains 0) may be

introduced as

L{x}(z) =

∫ ∞

0

x(t)eαªz(t, 0)dαt with z ∈ Rα ∩ R,

whenever this Cauchy alpha integral is well defined. As an example, we calcu-

late L{ec(·, 0)}, where c ∈ Rα is a constant such that limt→∞ ecªz(t, 0) = 0.

Then

L{ec(·, 0)}(z) =

∫ ∞

0

ec(t, 0)e
α
ªz(t, 0)dαt

=

∫ ∞

0

[1 + µα(t)(ªz)(t)] ec(t, 0)eªz(t, 0)dαt

=

∫ ∞

0

[

1−
µα(t)z

1 + µα(t)z

]

ecªz(t, 0)dαt

=

∫ ∞

0

1

1 + µα(t)z
ecªz(t, 0)dαt

=
1

c− z

∫ ∞

0

(cª z)(t)ecªz(t, 0)dαt

=
1

c− z

∫ ∞

0

(ecªz(·, 0))αdαt

=
1

z − c
.

Under appropriate assumptions we can also show

• L{xα}(z) = zL{x}(z)− x(0);

• L{xαα}(z) = z2L{x}(z)− zx(0)− xα(0);

• L{X}(z) =
1

z
L{x}(z), where X(t) =

∫ t

0

x(τ)dατ .

Further results can be derived as in [4, Section 3.10].



3. An Example

To illustrate the use of our Laplace transform, we consider the initial value

problem

yαα − 5yα + 6y = 0, y(0) = 1, yα(0) = 5.

By formally taking Laplace transforms, we find

0 = z2L{y}(z)− zy(0)− yα(0)− 5 [zL{y}(z)− y(0)] + 6L{y}(z)

= (z2 − 5z + 6)L{y}(z)− z

= (z − 2)(z − 3)L{y}(z)− z

so that

L{y}(z) =
z

(z − 2)(z − 3)
=

3

z − 3
−

2

z − 2
= L{3e3(·, 0)− 2e2(·, 0)}(z).

Hence, if e2(·, 0) and e3(·, 0) exist, we let

y = 3e3(·, 0)− 2e2(·, 0),

and then

yα = 9e3(·, 0)− 4e2(·, 0) and yαα = 27e3(·, 0)− 8e2(·, 0)

so that indeed y(0) = 3− 2 = 1, yα(0) = 9− 4 = 5, and yαα − 5yα + 6y = 0.

Let us now consider several special cases of this example.

(a) T = R and α(t) = t for all t ∈ T. Then ec(t, 0) = ect for any constant

c ∈ R, and the solution is given by

y(t) = 3e3t − 2e2t.

(b) T = N0 and α(t) = 2t+ 1 for all t ∈ T. Note that ec(·, 0) is only defined

on

{tm = 2m − 1| m ∈ N0} ⊂ T.

Since µα(t) = t+ 1, we find that ec satisfies

ec(tk+1, 0) = (1 + cµα(tk))ec(tk, 0) = (1 + c2k)ec(tk, 0),



Table 1. y = 3e3(·, 0)− 2e2(·, 0) for (b)

t e2(t, 0) e3(t, 0) y(t) yα(t) yαα(t)

0 1 1 1 5 19

1 3 4 6 24 84

3 15 28 54 192 636

7 135 364 822 2736 8748

15 2295 9100 22710 72720

31 75735 445900 1186230

and hence we obtain for constant c ∈ Rα

ec(tm, 0) =
m−1
∏

k=0

(1 + c2k).

See Table 1 for some numeric values. Note that yαα − 5yα + 6y = 0 in each

row.

(c) T = Z and α(t) = t− 2 for all t ∈ T. Note that ec(t, 0) is only defined for

all even integers. Since µα(t) ≡ −2, we find that ec satisfies

ec(α(t), 0) = (1 + cµα(t))ec(t, 0) = (1− 2c)ec(t, 0),

and hence we obtain for constant c 6= 1/2

ec(t, 0) = (1− 2c)−t/2.

See Table 2 for some numeric values.

(d) T = Z and α(t) = t + 1 + 2(−1)t for all t ∈ T. Note that while in the

previous two examples α(t) ≥ t for all t ∈ T and α(t) ≤ t for all t ∈ T,

respectively, none of these properties hold in the current example. This time

α : T → T is additionally a bijection and hence ec(t, 0) is defined on the entire

set T when c 6∈ {−1/3, 1}. We have

µα(t) = 1 + 2(−1)t =











3 if t is even

−1 if t is odd.



Table 2. y = 3e3(·, 0)− 2e2(·, 0) for (c)

t e2(t, 0) e3(t, 0) y(t) yα(t) yαα(t)

-6 -27 -125 -321

-4 9 25 57 189

-2 -3 -5 -9 -33 -111

0 1 1 1 5 19

2 -0.3̄ -0.2 0.06̄ -0.46̄ -2.73̄

4 0.1̄ 0.04 -0.102̄ -0.084̄ 0.191̄

As an example we calculate e2(t, 0) for some values of t. Since e2(0, 0) = 1

and α(0) = 3, we find

e2(3, 0) = e2(α(0), 0) = (1 + 2µα(0))e2(0, 0) = 7.

Next,

e2(2, 0) = e2(α(3), 0) = (1 + 2µα(3))e2(3, 0) = −7,

and similarly,

e2(5, 0) = −7
2, e2(4, 0) = 72, e2(7, 0) = 73, e2(6, 0) = −7

3

and so on. In general, we find

ec(t, 0) =











{(1− c)(1 + 3c)}t/2 if t is even

(1− c)(t−3)/2(1 + 3c)(t−1)/2 if t is odd,

which can be written in closed formula as

ec(t, 0) =
{(1− c)(1 + 3c)}bt/2c

(1− c)χ(t)
=
{(1− c)(1 + 3c)}bt/2c

(1− c)dt/2−bt/2ce
,

where χ = χ2Z+1 is the characteristic function for the odd integers. Again we

refer to Table 3 for some numeric values.



Table 3. y = 3e3(·, 0)− 2e2(·, 0) for (d)

t e2(t, 0) e3(t, 0) y(t) yα(t) yαα(t)

0 1 1 1 5 19

1 -1 -0.5 0.5 -0.5 -5.5

2 -7 -20 -46 -152 -484

3 7 10 16 62 214

4 49 400 1102 3404 10408

5 -49 -200 -502 -1604 -5008

6 -343 -8000 -23314 -70628

7 343 4000 11314 34628

8 2401 160000 475198

9 -2401 -80000 -235198
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