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Abstract

We consider a quasilinear dynamic equation reducing to a half-linear equation, an Emden–Fowler equation or a Sturm–Liouville
equation under some conditions. Any nontrivial solution of the quasilinear dynamic equation is eventually monotone. In other
words, it can be either positive decreasing (negative increasing) or positive increasing (negative decreasing). In particular, we
investigate the asymptotic behavior of all positive decreasing solutions which are classified according to certain integral conditions.
The approach is based on the Tychonov fixed point theorem.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we consider a quasilinear dynamic equation

[a(t)Φp(x1)]1 = b(t) f (xσ ), (1)

where a and b are real positive rd-continuous functions on a time scale T (an arbitrary nonempty closed subset of the
real numbers R), f : R 7→ R is continuous with u f (u) > 0 for u 6= 0 and Φp(u) = |u|

p−2u with p > 1. Eq. (1)
reduces to the half-linear dynamic equation, see Řehak [1],

[a(t)Φp(x1)]1 = b(t)Φp(xσ ) (2)

if f = Φp in (1) and to the Emden–Fowler dynamic equation, see Akın-Bohner and Hoffacker [2,3],

x12
= b(t)Φq(xσ ) (3)

if a(t) = 1, p = 2 and f = Φq , q > 1 in (1). Eq. (1) reduces to the quasilinear differential equation, see Cecchi,
Došlá and Marini [4],

[a(t)Φp(x ′)]′ = b(t) f (x) (4)
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when T = R as well as to the quasilinear difference equation, see Cecchi, Došlá and Marini [5],

1[akΦp(1xk)] = bk f (xk+1) (5)

when T = Z. Eq. (2) reduces to the half-linear differential equation, see Došly [6],

[a(t)Φp(x ′)]′ = b(t)Φp(x) (6)

when T = R as well as to the half-linear difference equation, see Řehak [7],

1[akΦp(1xk)] = bkΦp(xk+1) (7)

when T = Z. Moreover, if p = 2, then a special case of Eq. (2) is the Sturm–Liouville dynamic equation, see Bohner
and Peterson [8],

(a(t)x1)1 = b(t)xσ (8)

which covers the Sturm–Liouville differential equation, see Hartman [9],

(a(t)x ′)′ = b(t)x (9)

when T = R and the Sturm–Liouville difference equation, see Agarwal [10],

1(ak1xk) = bk xk+1 (10)

when T = Z.
Such studies are essentially motivated by the dynamics of positive radial solutions of reaction–diffusion (flow

through porous media, nonlinear elasticity) problems modelled by the nonlinear elliptic equation

−div(α(|∇u|)∇u) + λ f (u) = 0, (11)

where α : (0, ∞) 7→ (0, ∞) is continuous and such that δ(v) := α(|v|)v is an odd increasing homeomorphism from
R to R, λ is a positive constant (the Thiele modulus) and f represents the ratio of the reaction rate at concentration u
to the reaction rate at concentration unity, see Diaz [11] and Grossinho and Omari [12]. If α(|v|) = |v|

p−2, then the
differential operator in Eq. (11) is the one-dimensional analogue of the p-Laplacian 1p(u) = div(|∇u|

p−2
∇u), and

Eq. (11) leads to Eq. (4) when T = R.
Our main goal is to consider the asymptotic behavior of all positive decreasing solutions of Eq. (1) on time scales.

More precisely, all solutions of Eq. (1) can be divided into several disjoint subsets by means of necessary and sufficient
integral conditions which involve only the functions a and b, see Cecchi, Došlá and Marini [5,13] for the discrete case
and see Cecchi, Došlá and Marini [4] for the continuous case. The approach used is based on the Tychonov fixed point
theorem.

The set-up of this paper is as follows. In Section 2, we briefly introduce the concept of calculus of time scales
including preliminary results. Then in Section 3, we first classify classes of solutions of Eq. (1), and then describe
certain integral conditions and relations among them. In Section 4, we consider asymptotic behavior of all positive
decreasing solutions of Eq. (1).

2. Calculus on time scales

There are two main purposes of the study of time scales: Unification and Extension. Choosing the time scale to be
the set R corresponds to an ordinary differential equation, see Hartman [9], while choosing the time scale to be the
integers Z corresponds to a difference equation, see Kelley and Peterson [14]. Therefore this subject helps proving
results only once. On the other hand, there are time scales other than R and Z such as hZ for h > 0, the Cantor set,
the set of harmonic numbers {

∑n
k=1

1
k : n ∈ N}, qN0 for q > 1, etc., so that one can have much more general results.

An introduction with applications and advances in dynamic equations are given in [8,15].
We define the forward jump operator σ on T by

σ(t) := inf{s > t : s ∈ T} ∈ T
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for all t ∈ T. In this definition we put inf(∅) = sup T. The backward jump operator ρ on T is defined by

ρ(t) := sup{s < t : s ∈ T} ∈ T

for all t ∈ T. In this definition we put sup(∅) = inf T. If σ(t) > t , we say t is right-scattered, while if ρ(t) < t ,
we say t is left-scattered. If σ(t) = t , we say t is right-dense, while if ρ(t) = t , we say t is left-dense. Finally, the
graininess function µ : T 7→ [0, ∞) is defined by

µ(t) := σ(t) − t.

We define the interval [t0, ∞) in T by

[t0, ∞) := {t ∈ T : t ≥ t0}.

The set Tκ is derived from T as follows: If T has left-scattered maximum m, then Tκ
= T−{m}. Otherwise, Tκ

= T.
Assume f : T 7→ R and let t ∈ Tκ . Then we define f 1(t) to be the number (provided it exists) with the property

that given any ε > 0, there is a neighborhood U of t such that

|[ f (σ (t)) − f (s)] − f 1(t)[σ(t) − s]| ≤ ε|σ(t) − s|

for all s ∈ U . We call f 1(t) the delta derivative of f (t) at t , and it turns out that 1 is the usual derivative if T = R
and the usual forward difference operator 1 if T = Z.

It can be shown that if f : T 7→ R is continuous at t ∈ T and t is right-scattered, then

f 1(t) =
f (x(σ (t))) − f (t)

µ(t)
,

while if t is right-dense, then

f 1(t) = lim
s→t

f (t) − f (s)

t − s
,

if the limit exists. If f is differentiable at t , then

f σ (t) = f (t) + µ(t) f 1(t), where f σ
= f ◦ σ. (12)

If f, g : T 7→ R are differentiable at t ∈ Tκ , then the product and quotient rules are as follows:

( f g)1(t) = f 1(t)g(t) + f σ (t)g1(t)

and (
f

g

)1

(t) =
f 1(t)g(t) − f (t)g1(t)

g(t)gσ (t)
if g(t)gσ (t) 6= 0.

We say f : T 7→ R is rd-continuous provided f is continuous at each right-dense point t ∈ T and whenever t ∈ T is
left-dense lims→t− f (s) exists as a finite number. The set of rd-continuous functions f : T 7→ R will be denoted in
this paper by Crd and the set of functions f : T 7→ R that are differentiable and whose derivative is rd-continuous is
denoted by C1

rd.
A function F : Tκ

7→ R is called an antiderivative of f : T 7→ R provided F1(t) = f (t) holds for all t ∈ Tκ .
Every rd-continuous function has an antiderivative. In this case we define the integral of f by∫ t

a
f (s)1s = F(t) − F(a) for t ∈ T. (13)

If a ∈ T, sup T = ∞, and f ∈ Crd on [a, ∞), then we define the improper integral by∫
∞

a
f (t)1t := lim

b→∞

∫ b

a
f (t)1t

provided this limit exists, and we say the improper integral converges in this case. If this limit does not exist, then we
say that the improper integral diverges, see Bohner and Guseinov [16]. Now we state some important results. One can
find the proof of the following result in Bohner and Peterson [8, Theorem 1.75].
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Theorem 2.1. If f ∈ Crd and t ∈ Tκ , then∫ σ(t)

t
f (τ )1τ = µ(t) f (t).

The following induction principle on T is a useful tool, see Bohner and Peterson [8, Theorem 1.7].

Theorem 2.2. Let t0 ∈ T and assume that

{I (t) : t ∈ [t0, ∞)}

is a family of statements satisfying:

(i) The statement I (t0) is true.
(ii) If t ∈ [t0, ∞) is right-scattered and I (t) is true, then I (σ (t)) is also true.

(iii) If t ∈ [t0, ∞) is right-dense and I (t) is true, then there is a neighborhood U of t such that I (s) is true for all
s ∈ U ∩ (t, ∞).

(iv) If t ∈ (t0, ∞) is left-dense and I (s) is true for all s ∈ [t0, t), then I (t) is true.

Then I (t) is true for all t ∈ [t0, ∞).

The following L’Hospital’s Rule on timescales can be found in Agarwal and Bohner [17, Theorem 3]. Let
T̄ = T ∪ {sup T} ∪ {inf T}. If ∞ ∈ T̄, we call ∞ left-dense. For any left-dense t0 ∈ T and any ε > 0 the set

Lε(t0) = {t ∈ T : 0 < t0 − t < ε}

is nonempty, and so is Lε(∞) = {t ∈ T : t > 1
ε
} if ∞ ∈ T̄.

Theorem 2.3. Assume f and g are differentiable on T with

lim
t→t−0

f (t) = lim
t→t−0

g(t) = 0 for some left-dense t0 ∈ T̄.

Suppose there exists ε > 0 with

g(t) > 0, g1(t) < 0 for all t ∈ Lε(t0).

Then we have

lim inf
t→t−0

f 1(t)

g1(t)
≤ lim inf

t→t−0

f (t)

g(t)
≤ lim sup

t→t−0

f (t)

g(t)
≤ lim sup

t→t−0

f 1(t)

g1(t)
.

The following result is the chain rule on T, see Bohner and Peterson [8, Theorem 1.90].

Theorem 2.4. Let f : R 7→ R be continuously differentiable and suppose g : T 7→ R is delta differentiable. Then
f ◦ g : T 7→ R is delta differentiable and the formula

( f ◦ g)1(t) =

{∫ 1

0
f ′(g(t) + hµ(t)g1(t))dh

}
g1(t)

holds.

3. Classes of solutions in terms of certain integrals

Throughout this paper we assume that T is unbounded above. By a solution we mean a delta-differentiable function
x satisfying Eq. (1) such that aΦp(x1) ∈ C1

rd.
The following lemma is a crucial result that gives us that any solution of Eq. (1) is eventually monotone.
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Lemma 3.1. Let S be the set of nontrivial solutions of Eq. (1) on [t0, ∞). Any x ∈ S is eventually monotone and
belongs to one of the two classes:

M+
:= {x ∈ S : there exists T ≥ t0 such that x(t)x1(t) > 0 for t ≥ T }

M−
:= {x ∈ S : x(t)x1(t) < 0 on [t0, ∞)}.

Proof. Let x ∈ S and define

F(t) := a(t)x(t)Φp(x1(t)).

Then

F1(t) = [a(t)Φp(x1(t))]1xσ (t) + a(t)Φp(x1(t))x1(t)

= b(t) f (xσ (t))xσ (t) + a(t)Φp(x1(t))x1(t) ≥ 0.

Thus F is a nondecreasing function. If x was eventually constant, then the left-hand side of Eq. (1) would be
eventually zero but not the right-hand side of Eq. (1). Therefore, x is not eventually constant and so there are only two
possibilities:

(i) There exists T ∈ [t0, ∞) such that F(t) > 0 on [T, ∞).
(ii) F(t) < 0 on [t0, ∞).

In case (i), we obtain that

x(t)x1(t) > 0 on [T, ∞)

and so x ∈ M+ is eventually strongly monotone. In case (ii), we obtain that

x(t)x1(t) < 0 on [t0, ∞)

so x ∈ M−. Without loss of generality we assume x(t0) > 0 and x1(t0) < 0 and show that x is positive and decreasing
by Theorem 2.2. Consider

{I (t) : x is positive and decreasing on [t0, ∞)}.

(i) Since x(t0) > 0 and x1(t0) < 0, I (t0) is true.
(ii) Assume that t ∈ [t0, ∞) is right-scattered and I (t) is true. Then show that I (σ (t)) is also true. Assume not, i.e.,

I (σ (t)) is not true. If xσ (t0) < 0, then integrating Eq. (1) from t0 to σ(t0) and using Theorem 2.1 give us

a(σ (t0))Φp(x1(t0)) < a(σ (t0))Φp(x1(σ (t0))) − a(t0)Φp(x1(t0))

=

∫ σ(t0)

t0
b(τ ) f (xσ (τ ))1τ

= µ(t0)b(t0) f (xσ (t0)) < 0.

Since a is positive, Φp(x1(σ (t0))) is negative. Therefore x1(σ (t0)) < 0. But this is a contradiction with x ∈ M−.
(iii) Assume t ∈ [t0, ∞) is right-dense and I (t) is true. Show that there exists a neighborhood U of t such that I (s)

is true for all s ∈ U ∩ (t, ∞). Then assume not. Since I (t) is true when t = σ(t), then x(t) > 0 and x1(t) < 0.
Let U be a neighborhood of t and assume that there exists s ∈ U ∩ (t, ∞) such that x(s) < 0. Then integrating
Eq. (1) from t to s yields that

a(s)Φp(x1(s)) < a(s)Φp(x1(s)) − a(t)Φp(x1(t))

=

∫ s

t
b(τ ) f (xσ (τ ))1τ

≤ M f

∫ s

t
b(τ )1τ < 0,

where M f = maxu∈[x(t),x(s)] f (u). Since a is positive, Φp(x1(s)) < 0 and so x1(s) < 0. But this is a
contradiction with x ∈ M−.
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(iv) Assume t ∈ (t0, ∞) is left-dense and I (s) is true for all s ∈ [t0, t), then x(s) > 0 and x1(s) < 0 for all s ∈ [t0, t).
Assume that x(t) < 0. Integrating Eq. (1) from t0 to t yields that

a(t)Φp(x1(t)) < a(t)Φp(x1(t)) − a(t0)Φp(x1(t0))

=

∫ t

t0
b(τ ) f (xσ (τ ))1τ

≤ M f

∫ t

t0
b(τ )1τ < 0,

where M f = maxu∈[x(σ (t0)),x(t)] f (u). Since a is positive, Φp(x1(t)) < 0 and so x1(t) < 0. But then this is a
contradiction.

Hence by Theorem 2.2 we obtain that x is positive and decreasing in case (ii). �

Remark 3.1. In general, the condition xx1 < 0 does not ensure that x is eventually of one sign, i.e., is nonoscillatory.
But this is true when x ∈ S as follows from the proof of Lemma 3.1.

In this paper we study the class M−. The qualitative behavior of solutions of the class M+ is investigated in the next
project. In the view of Lemma 3.1 M− can be divided into the two subclasses:

M−

B = {x ∈ M−
: lim

t→∞
x(t) = l 6= 0},

M−

0 = {x ∈ M−
: lim

t→∞
x(t) = 0}.

Solutions of M−

B and M−

0 are called asymptotically constant solutions and decaying solutions, respectively. For the
further results we describe this class in terms of certain integral conditions and define

Y1 = lim
T →∞

∫ T

t0
Φp∗

(
1

a(t)

)
Φp∗

(∫ t

t0
b(s)1s

)
1t,

Y2 = lim
T →∞

∫ T

t0
Φp∗

(
1

a(t)

)
Φp∗

(∫ T

t
b(s)1s

)
1t,

Y3 = lim
T →∞

∫ T

t0
Φp∗

(
1

a(t)

)
1t,

Y4 = lim
T →∞

∫ T

t0
b(t)1t,

where Φp∗ is the inverse of the map Φp, i.e., Φp(Φp∗(u)) = Φp∗(Φp(u)) = u. Then Φp∗(u) = |u|
p∗

−2u, where
1
p +

1
p∗ = 1. We conclude this section with some relationships between the convergence or divergence of Y1, Y2, Y3

and Y4.

Lemma 3.2. We have

(i) If Y1 < ∞, then Y3 < ∞.
(ii) If Y2 < ∞, then Y4 < ∞.

(iii) If Y1 = ∞, then Y3 = ∞ or Y4 = ∞.
(iv) If Y2 = ∞, then Y3 = ∞ or Y4 = ∞.
(v) Y1 < ∞ and Y2 < ∞ if and only if Y3 < ∞ and Y4 < ∞.

Proof. (i) Let t1 ∈ (t0, T ). Since∫ T

t0
Φp∗

(
1

a(s)

)
Φp∗

(∫ s

t0
b(t)1t

)
1s =

∫ t1

t0
Φp∗

(
1

a(s)

)
Φp∗

(∫ s

t0
b(t)1t

)
1s

+

∫ T

t1
Φp∗

(
1

a(s)

)
Φp∗

(∫ s

t0
b(t)1t

)
1s
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>

∫ t1

t0
Φp∗

(
1

a(s)

)
Φp∗

(∫ s

t0
b(t)1t

)
1s

+Φp∗

(∫ t1

t0
b(s)1s

) ∫ T

t1
Φp∗

(
1

a(s)

)
1s,

the assertion follows.
(ii) Let t1 ∈ (t0, T ). Since∫ T

t0
Φp∗

(
1

a(τ )

)
Φp∗

(∫ T

τ

b(s)1s

)
1τ =

∫ T

t0
Φp∗

(∫ T

τ

b(s)

a(τ )
1s

)
1τ

>

∫ t1

t0
Φp∗

(∫ T

t1

b(s)

a(τ )
1s

)
1τ

=

∫ t1

t0
Φp∗

(
1

a(τ )

)
Φp∗

(∫ T

t1
b(s)1s

)
1τ

>

(∫ T

t1
b(s)1s

) ∫ t1

t0
Φp∗

(
1

a(τ )

)
1τ,

the assertion holds.
(iii) Since∫ T

t0
Φp∗

(
1

a(t)

)
Φp∗

(∫ t

t0
b(s)1s

)
1t ≤ Φp∗

(∫ T

t0
b(s)1s

) ∫ T

t0
Φp∗

(
1

a(t)

)
1t,

the assertion holds.
(iv) Since∫ T

t0
Φp∗

(
1

a(t)

)
Φp∗

(∫ T

t
b(s)1s

)
1t ≤ Φp∗

(∫ T

t0
b(s)1s

) ∫ T

t0
Φp∗

(
1

a(t)

)
1t,

the assertion holds.
(v) It follows immediately from (i)–(iv). �

Concerning the class M− for Eq. (1), such a class can be empty when T = R, see Kiguradze and Chanturia [18,
Corollary 17.3]. This fact has no discrete analogy, see Cecchi, Došlá and Marini [5, Theorem 1].

4. Limit behavior

In this section we study the positive decreasing solutions of Eq. (1) in the class M− in terms of integrals Y1 and Y2.
We start with necessary and sufficient conditions ensuring that M−

B 6= ∅.

Theorem 4.1. Eq. (1) has a solution in the class M−

B if and only if Y2 < ∞.

Proof. Assume that x ∈ M−

B . Without loss of generality suppose x(t) > 0 and x1(t) < 0 for t ≥ t0 and define
limt→∞ x(t) = lx 6= 0. Assume Y2 = ∞ to get a contradiction. Integrating Eq. (1) from t to T , we obtain

−a(t)Φp(x1(t)) >

∫ T

t
b(τ ) f (xσ (τ ))1τ

and hence

Φp(x1(t)) < −
1

a(t)

∫ T

t
b(τ ) f (xσ (τ ))1τ ≤ −

1
a(t)

m f

∫ T

t
b(τ )1τ,

where m f = minu∈[x(σ (t)),x(T )] f (u). Therefore

x1(t) < Φp∗

(
−

1
a(t)

m f

∫ T

t
b(τ )1τ

)
= −Φp∗(m f )Φp∗

(
1

a(t)

)
Φp∗

(∫ T

t
b(τ )1τ

)
.
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This implies that

x(t) < x(t0) − Φp∗(m f )

∫ t

t0
Φp∗

(
1

a(τ )

)
Φp∗

(∫ t

τ

b(s)1s

)
1τ.

Note that lx > 0. Since Y2 = ∞, we have a contradiction. Therefore Y2 < ∞.
Conversely, let M f = maxu∈[1/2,1] f (u) and choose t1 ∈ [t0, ∞) such that

Φp∗(M f )

∫
∞

t1
Φp∗

(
1

a(t)

∫
∞

τ

b(s)1s

)
1τ ≤

1
2
. (14)

Define X to be the Frěchet space of all continuous functions on [t1, ∞) endowed with the topology of uniform
convergence on compact subintervals of [t1, ∞). Let Ω be the nonempty subset of X given by

Ω :=

{
x ∈ X :

1
2

≤ x(t) ≤ 1 for all t ≥ t1

}
.

Clearly, Ω is closed, convex and bounded. Now we consider the operator T : Ω 7→ X which assigns to any x ∈ Ω the
continuous functions T (x) = yx given by

yx (t) = T (x)(t) =
1
2

+

∫
∞

t
Φp∗

(
1

a(s)

∫
∞

s
b(τ ) f (xσ (τ ))1τ

)
1s. (15)

We show that T satisfies the hypotheses of the Tychonov fixed point theorem.
Claim: T : Ω 7→ Ω .

1
2

≤ T (x)(t) =
1
2

+

∫
∞

t
Φp∗

(
1

a(s)

∫
∞

s
b(τ ) f (xσ (τ ))1τ

)
1s

≤
1
2

+ Φp∗(M f )

∫
∞

t
Φp∗

(
1

a(s)

∫
∞

s
b(τ )1τ

)
1s

≤ 1,

by inequality (14).
Claim: T is continuous in Ω ⊆ X .

Let {xn}, n ∈ N be a sequence in Ω which is convergent to x̄ ∈ X , x̄ ∈ Ω̄ = Ω . Because for s ≥ t1

Φp∗

(
1

a(s)

∫
∞

s
b(τ ) f (xσ

n (τ ))1τ

)
≤ Φp∗

(
M f

a(s)

∫
∞

s
b(τ )1τ

)
< ∞,

Lebesgue’s dominated convergence theorem gives the continuity of T in Ω .
Claim: T is relatively compact (i.e., equibounded and equicontinuous).

Since Ω is a bounded subset of X , T is equibounded. For any x ∈ Ω ,

0 ≤ −[T (x)(t)]1 = Φp∗

(
1

a(t)

∫
∞

t
b(τ ) f (xσ (τ ))1τ

)
≤ Φp∗

(
M f

a(t)

∫
∞

t
b(τ )1τ

)
< ∞ (16)

which implies that functions in T (Ω) are equicontinuous on every compact subinterval of [t1, ∞). From the Tychonov
fixed point theorem there exists an x̄ ∈ Ω such that x̄ = T (x̄), i.e.,

x̄(t) =
1
2

+

∫
∞

t
Φp∗

(
1

a(s)

∫
∞

s
b(τ ) f (x̄σ (τ ))1τ

)
1s.

By (16) we have x̄1(t) = [T (x̄)(t)]1 < 0. Therefore by Lemma 3.1,
(
x̄ x̄1

)
(t) < 0 on [t1, ∞). Hence

x̄ ∈ M−

B 6= ∅. �

Remark 4.1. As regards the class M−

0 it is not always true that there are solutions of (1) in the class M−

0 when Y2 <

∞. Cecchi, Došlá, and Marini in [5, Example 1] show that M−

B 6= ∅ by Theorem 4.1 but M−

0 = ∅ for the equation

12xn =
2

n(n + 2)2 xn+1,

when T = Z.
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Theorem 4.2. If Y1 < ∞ and Y2 < ∞, then Eq. (1) has a solution in class M−

0 .

Proof. We prove the statement M−

0 6= ∅ by using a method similar to that given in the proof of Theorem 4.1. By
Lemma 3.2 (v) we have Y3 < ∞ and Y4 < ∞. Choose t1 ≥ t0 such that

max
u∈[0,Y3]

f (u)

∫
∞

t1
b(τ )1τ <

1
2
. (17)

Let Ω be the nonempty subset of C[t1, ∞) given by

Ω =

{
u ∈ C[t1, ∞) : 0 ≤ u(t) ≤

∫
∞

t
Φp∗

(
1

a(s)

)
1s, for all t ≥ t1

}
.

Clearly, Ω is bounded, closed and convex. Now we consider the operator T : Ω 7→ C[t1, ∞) which assigns to any
u ∈ Ω the continuous function T (u) = yu given by

yu(t) = T (u)(t) =

∫
∞

t
Φp∗

(
1

a(s)

)
Φp∗

(
1 −

∫ s

t1
b(τ ) f (uσ (τ ))1τ

)
1s.

In view of inequality (17) we get

0 ≤

∫ t

t1
b(τ ) f (uσ (τ ))1τ ≤ max

u∈[0,Y3]
f (u)

∫
∞

t1
b(τ )1τ <

1
2
.

Moreover, Φp∗( 1
2 ) ≤ 1 and the operator T is well defined and

0 < T (u)(t) ≤

∫
∞

t
Φp∗

(
1

a(s)

)
1s,

i.e., T (Ω) ⊆ Ω . In order to complete the proof, it is sufficient to use an argument similar to that given in the final part
of the proof of Theorem 4.1 and to apply the Tychonov fixed point theorem. �

The following lemma is crucial to proving that every solution of Eq. (1) in the class M− tends to a nonzero limit
as t → ∞, i.e., M−

0 = ∅, under certain conditions.

Lemma 4.1. If Y3 = ∞, then for any x ∈ M−

lim
t→∞

a(t)Φp(x1(t)) = 0.

Proof. Since a(t)Φp(x1(t)) is either negative and increasing or positive and decreasing for any solution x ∈ M− of
Eq. (1), limt→∞ a(t)Φp(x1(t)) exists. Assume that x ∈ M− such that

lim
t→∞

a(t)Φp(x1(t)) = λx < 0.

Hence x is positive and the function aΦp(x1) is negative and increasing. Consequently, since

aΦp(x1) = Φp

 x1

Φp∗

(
1
a

)
 ,

x1

Φp∗ ( 1
a )

is negative increasing and

x1(t) < Φp∗(λx )Φp∗

(
1

a(t)

)
.

Integrating both sides from t0 to t , we have

x(t) < x(t0) + Φp∗(λx )

∫ t

t0
Φp∗

(
1

a(s)

)
1s
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which contradicts the fact that x is positive as t → ∞ since Y3 = ∞. The case λx > 0 is handled in a similar
way. �

Theorem 4.3. Assume Y1 = ∞, Y2 < ∞ and

lim sup
u→0

f (u)

Φp(u)
< ∞. (18)

Then any x ∈ M− tends to a nonzero limit as t → ∞, i.e., M−
= M−

B 6= ∅, M−

0 = ∅.

Proof. Let x ∈ M−

0 . Without loss of generality assume 0 < x < 1 and x1 < 0 for all t ≥ t0. By Lemma 3.2, Y3 = ∞

and thus, by Lemma 4.1, limt→∞ a(t)Φp(x1(t)) = 0. Since Eq. (18) holds, there exists M > 0 such that

f (xσ (t)) ≤ MΦp(xσ (t)) for all t ≥ t0.

By integrating Eq. (1) from t to ∞, we obtain

−a(t)Φp(x1(t)) =

∫
∞

t
b(τ ) f (xσ (τ ))1τ

< M
∫

∞

t
b(τ )Φp(xσ (τ ))1τ

< MΦp(xσ (t))
∫

∞

t
b(τ )1τ.

This implies that

x1(t)

xσ (t)
> −Φp∗(M)Φp∗

(∫
∞

t

b(τ )

a(t)
1τ

)
.

On the other hand,

[ln(x(t))]1 = x1(t)
∫ 1

0

1
x(t) + µ(t)hx1(t)

dh ≥
x1(t)

x(t) + µ(t)x1(t)
=

x1(t)

xσ (t)
,

where we use Theorem 2.4 and Eq. (12). By integrating the above inequality from t0 to t we get

ln(x(t)) − ln(x(t0)) > −Φp∗(M)

∫ t

t0
Φp∗

(∫
∞

τ

b(s)

a(τ )
1s

)
1τ,

which is a contradiction as t → ∞. �

Remark 4.2. In general Theorem 4.3 does not hold without assuming (18). Cecchi, Došlá, and Marini in [5, Example
2] show that M−

0 6= ∅ for the equation

12xn =
6
√

n(2)

(n + 1)(4)

√
|xn+1|,

when T = Z. In this case, Y3 = ∞ and Y2 < ∞.

From the above results, we can summarize the situation as follows:

Theorem 4.4. We have

(i) Assume Y1 = ∞ and Y2 < ∞. Then for Eq. (1) it holds that M−

B 6= ∅. If (18) is satisfied, then M−
= M−

B 6= ∅,
M−

0 = ∅.
(ii) Assume Y1 < ∞ and Y2 < ∞. Then for (1) both solutions in M−

0 and M−

B exist.
(iii) Assume (18) holds. Then Eq. (1) has solutions in the classes M−

0 and M−

B if and only if Y1 < ∞ and Y2 < ∞.

We finish this section with the following proposition, where we use the L’Hospital Rule on T.
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Proposition 4.1. Assume Y1 < ∞ and Y2 < ∞, then there exists a solution x of Eq. (1) such that

lim
t→∞

x(t)∫
∞

t Φp∗

(
1

a(s)

)
1s

exists finitely and it is different from zero.

Proof. Let x be the fixed point of operator T considered in the proof of Theorem 4.2. Then x ∈ M−

0 . From Eq. (1)
the function aΦp(x1) is negative increasing. Since

a(t)Φp(x1(t)) = Φp

 x1(t)

Φp∗

(
1

a(t)

)
 ,

the function x1

Φp∗

(
1
a

) is also negative and increasing. Then

lim
t→∞

x1(t)

Φp∗

(
1

a(t)

)
exists finitely and it is not zero because

−x1(t) = Φp∗

(
1

a(t)

)
Φp∗

(
1 −

∫ t

t0
b(τ ) f (xσ (τ ))1τ

)
≥ Φp∗

(
1
2

)
Φp∗

(
1

a(t)

)
.

The assertion follows from Theorem 2.3. �
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