Boundary Value Problems For A Differential Equation On A Measure Chain

Elvan Akin
Department of Mathematics and Statistics, University of Nebraska-Lincoln Lincoln, NE 68588-0323
eakin@math.unl.edu

Abstract

We will prove existence and uniqueness theorems for solution of the boundary value problem $x^{\Delta \Delta}(t)=f\left(t, x^{\sigma}(t)\right), x(a)=A, x\left(\sigma^{2}(b)\right)=B$ for t in a measure chain \mathbb{T}. In one of our results we use upper and lower solutions to prove the existence of a solution to this boundary value problem (BVP). We then use this result to show that if for each fixed t, $f(t, x)$ is strictly increasing in x, then this BVP has a unique solution. In our last result we get an existence-uniqueness theorem in the case where f satisfies a one sided Lipschitz condition.

Key words: measure chains, lower and upper solutions
AMS Subject Classification:39A10

1 Introduction

We are concerned with the boundary value problem (BVP)

$$
\begin{gathered}
x^{\Delta \Delta}=f\left(t, x^{\sigma}(t)\right), \\
x(a)=A, \quad x\left(\sigma^{2}(b)\right)=B
\end{gathered}
$$

on a measure chain \mathbb{T}, where we assume $f(t, x)$ is continuous on $[a, b] \times \mathbb{R}$. We need some preliminary definitions and theorems.
Definition A measure chain (time scale) is an arbitrary nonempty closed subset of the real numbers \mathbb{R}.
Definition Let \mathbb{T} be a measure chain and define the forward jump operator σ on \mathbb{T} by

$$
\sigma(t):=\inf \{s>t: s \in \mathbb{T}\} \in \mathbb{T}
$$

for all $t \in \mathbb{T}$. In this definition we put $\sigma(\emptyset)=\sup \mathbb{T}$ and the backward jump operator ρ on \mathbb{T} by

$$
\rho(t):=\sup \{s<t: s \in \mathbb{T}\} \in \mathbb{T}
$$

for all $t \in \mathbb{T}$. In this definition we put $\rho(\emptyset)=\inf \mathbb{T}$. If $\sigma(t)>t$, we say t is right-scattered, while if $\rho(t)<t$ we say t is left-scattered. If $\sigma(t)=t$, we say t is right-dense, while if $\rho(t)=t$ we say t is left- dense.
Throughout this paper we make the blanket assumption that $a \leq b$ are points in \mathbb{T}.
Definition Define the interval $[a, b]$ in \mathbb{T} by

$$
[a, b]:=\{t \in \mathbb{T}: a \leq t \leq b\}
$$

Other types of intervals are defined similarly. The set \mathbb{T}^{κ} is derived from \mathbb{T} as follows: If \mathbb{T} has a left scattered maximum m, then $\mathbb{T}^{\kappa}=\mathbb{T}-\{m\}$. Otherwise, $\mathbb{T}^{\kappa}=\mathbb{T}$.
We are concerned with calculus on measure chains whose introduction is given in S. Hilger [7]. Some recent papers concerning differential equations on measure chains were written by Agarwal and Bohner [1, 2], Agarwal, Bohner, and Wong [3], Erbe and Hilger [5], Erbe and Peterson [6]. Some preliminary definitions and theorems on measure chains can also be found in Kaymakçalan, Lakshmikantham, and Sivasundaram [8].
Definition Assume $f: \mathbb{T} \mapsto \mathbb{R}$ and let $t \in \mathbb{T}^{\kappa}$, then we define $f^{\Delta}(t)$ to be the number (provided it exists) with property that given any $\epsilon>0$, there is a neighorhood U of t such that

$$
\left|[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]\right| \leq \epsilon|\sigma(t)-s|
$$

for all $s \in U$. We call $f^{\Delta}(t)$ the delta derivative of $f(t)$ and it turns out that f^{Δ} is the usual derivative if $\mathbb{T}=\mathbb{R}$ and is the usual forward difference operator if $\mathbb{T}=\mathbb{Z}$.
Some elementary facts that we will use concerning the delta derivative are contained in the following theorem due to Hilger.

Theorem 1 Assume $f: \mathbb{T} \mapsto \mathbb{R}$ is a function and let $t \in \mathbb{T}^{\kappa}$. Then we have the following:

1. If f is differentiable at t, then f is continuous at t.
2. If f is continuous at t and t is right scattered, then f is differentiable at t with

$$
f^{\Delta}(t)=\frac{f(\sigma(t))-f(t)}{\sigma(t)-t}
$$

3. If f is differentiable and t is right dense, then

$$
f^{\Delta}(t)=\lim _{s \rightarrow t} \frac{f(t)-f(t)}{t-s}
$$

4. If f is differentiable at t, then

$$
f(\sigma(t))=f(t)+(\sigma(t)-t) f^{\Delta}(t)
$$

Definition A function $F: \mathbb{T}^{\kappa} \mapsto \mathbb{R}$ is called an antiderivative of $f: \mathbb{T} \mapsto \mathbb{R}$ provided

$$
F^{\Delta}(t)=f(t)
$$

holds for all $t \in \mathbb{T}^{\kappa}$. We define the integral of f by

$$
\int_{a}^{t} f(s) \Delta s=F(t)-F(a)
$$

for $t \in \mathbb{T}$.
Definition We say $f: \mathbb{T} \mapsto \mathbb{R}$ is right-dense continuous provided at any right-dense point $t \in \mathbb{T}$

$$
\lim _{s \rightarrow t^{+}} f(s)=f(t)
$$

and
if $t \in \mathbb{T}$ is left-dense we assume

$$
\lim _{s \rightarrow t^{-}} f(s)
$$

exists and is finite.
Definition Let $a, b \in \mathbb{T}$ and assume that $\sigma^{2}(b) \in \mathbb{T}$. We want to consider $L x(t)=0$ on the interval $\left[a, \sigma^{2}(b)\right]$. We say a nontrivial solution of $L x(t)=0$ has a generalized zero at a iff $x(a)=0$. We say a nontrivial solution x has a generalized zero at $t_{0} \in\left(a, \sigma^{2}(b)\right]$ provided either $x\left(t_{0}\right)=0$ or $x\left(\rho\left(t_{0}\right)\right) x\left(t_{0}\right)<0$. Finally we say that $L x(t)=0$ is disconjugate on $\left[a, \sigma^{2}(b)\right]$ provided there is no nontrivial solution of $L x(t)=0$ with two (or more) generalized zeros in [$\left.a, \sigma^{2}(b)\right]$.
Definition Let X and Y be Banach spaces. We say $T: X \mapsto Y$ is compact provided it is continuous and T maps bounded sequences into sequentially compact sequences. In this paper we will make use of the following well known theorem whose proof is given in Deimling [4] and Zeidler [10].

Theorem 2 (Schauder Fixed Point Theorem) Assume X is a Banach space and K is a closed, bounded and convex subset of X. If $T: K \mapsto K$ is compact, then T has a fixed point in K.

An excellent explanation of nonlinear BVPs for difference equation can be found in Kelley and Peterson ([9],Chapter 9).

2 Main Results

Definition Let

$$
D:=\max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)}|G(t, s)| \Delta s
$$

where $G(t, s)$ is the Green's function for the BVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=0, \\
x(a)=0, \quad x\left(\sigma^{2}(b)\right)=0
\end{gathered}
$$

on a measure chain \mathbb{T}. If $\mathbb{T}=\mathbb{R}$ or $\mathbb{T}=\mathbb{Z}$, then it is well known that $D=\frac{\left(\sigma^{2}(b)-a\right)^{2}}{8}$.

Theorem 3 Assume $f(t, x)$ is continuous on $[a, b] \times \mathbb{R}$. If $M>0$ satisfies $M \geq \max \{|A|,|B|\}$ and $D \leq \frac{M}{Q}$ where $Q>0$ satisfies

$$
Q \geq \max \{|f(t, x)|: t \in[a, b],|x| \leq 2 M\}
$$

then the $B V P$

$$
\begin{align*}
x^{\Delta \Delta}(t) & =f\left(t, x^{\sigma}(t)\right), \quad t \in[a, b] \tag{1}\\
x(a) & =A, \quad x\left(\sigma^{2}(b)\right)=B \tag{2}
\end{align*}
$$

has a solution.
Proof: Define X to be the Banach space $X=C\left[a, \sigma^{2}(b)\right]$ equipped with the norm $\|\cdot\|$ defined by

$$
\|x\|:=\max _{t \in\left[a, \sigma^{2}(b)\right]}|x(t)| .
$$

Let

$$
K:=\{x \in X:\|x\| \leq 2 M\} .
$$

It can be shown that K is a closed, bounded and convex subset of X. Define $A: K \mapsto X$ by

$$
A x(t):=z(t)+\int_{a}^{\sigma(b)} G(t, s) f\left(s, x^{\sigma}(s)\right) \Delta s
$$

for $t \in\left[a, \sigma^{2}(b)\right]$, where $z(t)$ is the solution of the BVP

$$
\begin{gathered}
z^{\Delta \Delta}(t)=0 \\
z(a)=A, \quad z\left(\sigma^{2}(b)\right)=B
\end{gathered}
$$

It can be shown that $A: K \mapsto X$ is continuous.
Claim $A: K \mapsto K$:
Let $x \in K$. Consider

$$
\begin{aligned}
|A x(t)| & =\left|z(t)+\int_{a}^{\sigma(b)} G(t, s) f\left(s, x^{\sigma}(s)\right) \Delta s\right| \\
& \leq|z(t)|+\int_{a}^{\sigma(b)}|G(t, s)|\left|f\left(s, x^{\sigma}(s)\right)\right| \Delta s \\
& \leq M+Q \int_{a}^{\sigma(b)}|G(t, s)| \Delta s \\
& \leq M+Q D \\
& \leq M+Q \frac{M}{Q} \\
& =2 M
\end{aligned}
$$

for all $t \in\left[a, \sigma^{2}(b)\right]$. But this implies that $\|A x\| \leq 2 M$. Hence $A: K \mapsto K$.
It can be shown that $A: K \mapsto K$ is a compact operator by the Ascoli-Arzela Theorem. Hence A has a fixed point in K by Theorem 2.

Corollary 4 If $f(t, x)$ is continuous and bounded on $[a, b] \times \mathbb{R}$, then the BVP (1), (2) has a solution.

Proof: Choose $P>\sup \{|f(t, x)|: a \leq t \leq b, x \in \mathbb{R}\}$. Then, pick M large enough so that

$$
D<\frac{M}{P}
$$

and

$$
|A| \leq M, \quad|B| \leq M
$$

Then there is a number $Q>0$ such that

$$
P \geq Q \text { where } Q \geq \max \{|f(t, x)|: t \in[a, b],|x| \leq 2 M\}
$$

Hence

$$
D<\frac{M}{P} \leq \frac{M}{Q}
$$

and so, the given BVP has a solution by Theorem 3.
Define

$$
\mathbb{D}:=\left\{x: x^{\Delta}(t) \text { is continuous on }[a, \sigma(b)] \text { and } x^{\Delta \Delta}(t) \text { is right - dense continuous on }[a, b]\right\} .
$$

Definition We say $\alpha \in \mathbb{D}$ is a lower solution of (1) on $\left[a, \sigma^{2}(b)\right]$ provided

$$
\alpha^{\Delta \Delta}(t) \geq f\left(t, \alpha^{\sigma}(t)\right)
$$

on $[a, b]$. We say $\beta \in \mathbb{D}$ is an upper solution of (1) on $\left[a, \sigma^{2}(b)\right]$ provided

$$
\beta^{\Delta \Delta}(t) \leq f\left(t, \beta^{\sigma}(t)\right)
$$

on $[a, b]$.
Theorem 5 Assume $f(t, x)$ is continuous on $[a, b] \times \mathbb{R}$ and there exist a lower solution $\alpha(t)$ and an upper solution $\beta(t)$ of (1) and

$$
\alpha(a) \leq A \leq \beta(a), \quad \alpha\left(\sigma^{2}(b)\right) \leq B \leq \beta\left(\sigma^{2}(b)\right)
$$

such that

$$
\alpha(t) \leq \beta(t)
$$

on $\left[a, \sigma^{2}(b)\right]$. Then the BVP (1), (2) has a solution $x(t)$ with

$$
\alpha(t) \leq x(t) \leq \beta(t)
$$

on $\left[a, \sigma^{2}(b)\right]$.

Proof: Define the modification of f with respect to α and β by for each fixed $t \in[a, b]$

$$
F(t, x)= \begin{cases}f\left(t, \beta^{\sigma}(t)\right)+\frac{x-\beta^{\sigma}(t)}{1+|x|} & \text { if } x \geq \beta^{\sigma}(t) \\ f(t, x) & \text { if } \alpha^{\sigma}(t) \leq x \leq \beta^{\sigma}(t) \\ f\left(t, \alpha^{\sigma}(t)\right)+\frac{x-\alpha^{\sigma}(t)}{1+|x|} & \text { if } x \leq \alpha^{\sigma}(t)\end{cases}
$$

Note that $F(t, x)$ is continuous and bounded on $[a, b] \times \mathbb{R}$ and $F(t, x)=f(t, x)$ if $\alpha^{\sigma}(t) \leq x \leq$ $\beta^{\sigma}(t)$ for $t \in[a, b]$.
By Corollary 4, the BVP

$$
\begin{gathered}
x^{\Delta \Delta}=F\left(t, x^{\sigma}(t)\right) \\
x(a)=A, \quad x\left(\sigma^{2}(b)\right)=B
\end{gathered}
$$

has a solution $x(t)$. To complete the proof it suffices to show that

$$
\alpha(t) \leq x(t) \leq \beta(t)
$$

on $\left[a, \sigma^{2}(b)\right]$.
Claim $x(t) \leq \beta(t)$ for $t \in\left[a, \sigma^{2}(b)\right]$:
Assume not, then if $z(t):=x(t)-\beta(t)$, then $z(t)$ has a positive maximum in $\left(a, \sigma^{2}(b)\right)$.
Choose $c \in\left(a, \sigma^{2}(b)\right)$ so that $z(c)=\max \left\{z(t): t \in\left[a, \sigma^{2}(b)\right]\right\}>0$ and $z(t)<z(c)$ for $t \in\left(c, \sigma^{2}(b)\right]$.
There are four cases to consider:

1. $\rho(c)=c<\sigma(c)$
2. $\rho(c)<c<\sigma(c)$
3. $\rho(c)<c=\sigma(c)$
4. $\rho(c)=c=\sigma(c)$.

We will show that the first case is impossible and in the other cases we will show that

$$
z^{\Delta}(c) \leq 0 \text { and } z^{\Delta \Delta}(\rho(c)) \leq 0
$$

Case 1: $\rho(c)=c<\sigma(c)$.
Claim this case is impossible:
Assume $z^{\Delta}(c) \geq 0$. If $z^{\Delta}(c)>0$, then $z(\sigma(c))>z(c)$. But this contradicts the way c was chosen. If $z^{\Delta}(c)=0$, then $z(\sigma(c))=z(c)$. But this also contradicts the way c was chosen.
Assume $z^{\Delta}(c)<0$, then $\lim _{t \rightarrow c^{-}} z^{\Delta}(t)=z^{\Delta}(c)<0$. This implies that there exits a $\delta>0$ such that $z^{\Delta}(t)<0$ on $(c-\delta, c]$. Hence $z(t)$ is strictly decreasing on $(c-\delta, c]$. But this contradicts the way c was chosen. Therefore this case is impossible.
Case 2: $\rho(c)<c<\sigma(c)$.
It is easy to check that $z^{\Delta}(c)<0$ and $z^{\Delta \Delta}(\rho(c))<0$.

Case 3: $\rho(c)<c=\sigma(c)$.
Claim $z^{\Delta}(c) \leq 0$ and $z^{\Delta \Delta}(\rho(c)) \leq 0$:
Assume $z^{\Delta}(c)>0$, then $\lim _{t \rightarrow c^{+}} z^{\Delta}(t)=z^{\Delta}(c)>0$. This implies that there exists a $\delta>0$ such that $z^{\Delta}(t)>0$ on $[c, c+\delta)$. Hence $z(t)$ is strictly increasing on $[c, c+\delta)$. But this contradicts the way c was chosen. Therefore $z^{\Delta}(c) \leq 0$. Since $\rho(c)$ is right-scattered,

$$
z^{\Delta \Delta}(\rho(c))=\frac{z^{\Delta}(c)-z^{\Delta}(\rho(c))}{c-\rho(c)} \leq 0
$$

Case 4: $\rho(c)=c=\sigma(c)$.
Claim $z^{\Delta}(c)=0$ and $z^{\Delta \Delta}(\rho(c)) \leq 0$:
Using the same proof as in Case 3 we have that $z^{\Delta}(c) \leq 0$. Assume $z^{\Delta}(c)<0$, then $\lim _{t \rightarrow c} z^{\Delta}(t)=z^{\Delta}(c)<0$. This implies that there exists a $\delta>0$ such that $z^{\Delta}(t)<0$ on $(c-\delta, c]$. Hence $z(t)$ is strictly decreasing on $(c-\delta, c]$. But this contradicts the way c was chosen.
Assume $z^{\Delta \Delta}(\rho(c))>0$, then $\lim _{t \rightarrow \rho(c)} z^{\Delta \Delta}(t)=z^{\Delta \Delta}(\rho(c))=z^{\Delta \Delta}(c)>0$. This implies that there exists a $\delta>0$ such that $z^{\Delta \Delta}(t)>0$ on $(c-\delta, c+\delta)$. Hence $z^{\Delta}(t)$ is strictly increasing on $(c-\delta, c+\delta)$. But $z^{\Delta}(c)=0$ hence $z^{\Delta}(t)>0$ on $(c, c+\delta)$. This implies that $z(t)$ is strictly increasing on $(c, c+\delta)$. But this contradicts the way c was chosen. Therefore $z^{\Delta \Delta}(\rho(c)) \leq 0$. Hence

$$
\begin{aligned}
x(c) & >\beta(c) \\
x^{\Delta}(c) & \leq \beta^{\Delta}(c) \\
x^{\Delta \Delta}(\rho(c)) & \leq \beta^{\Delta \Delta}(\rho(c)) .
\end{aligned}
$$

But

$$
\begin{aligned}
x^{\Delta \Delta}(\rho(c)) & =F\left(\rho(c), x^{\sigma}(\rho(c))\right) \\
& =f\left(\rho(c), \beta^{\sigma}(\rho(c))+\frac{x^{\sigma}(\rho(c))-\beta^{\sigma}(\rho(c))}{1+\left|x^{\sigma}(\rho(c))\right|}\right. \\
& =f\left(\rho(c), \beta^{\sigma}(\rho(c))\right)+\frac{x(c)-\beta(c)}{1+|x(c)|} \\
& >f\left(\rho(c), \beta^{\sigma}(\rho(c))\right) \\
& \geq \beta^{\Delta \Delta}(\rho(c))
\end{aligned}
$$

since $\sigma(\rho(c))=c, x(c)>\beta(c)$ and β is an upper solution of (1) on $\left[a, \sigma^{2}(b)\right]$.
Hence $x^{\Delta \Delta}(\rho(c))>\beta^{\Delta \Delta}(\rho(c))$. But this contradicts the fact that $x^{\Delta \Delta}(\rho(c)) \leq \beta^{\Delta \Delta}(\rho(c))$. Therefore $x(t) \leq \beta(t)$ for $t \in\left[a, \sigma^{2}(b)\right]$.
Similarly, one can show that $\alpha(t) \leq x(t)$ for $t \in\left[a, \sigma^{2}(b)\right]$. Therefore $x(t)$ solves the BVP (1), (2).

Example 6 Consider the $B V P$

$$
x^{\Delta \Delta}(t)=-\cos x^{\sigma}(t)
$$

$$
x(0)=0, \quad x\left(\sigma^{2}(b)\right)=0 .
$$

First, note that $\alpha(t)=0$ is a lower solution on $\left[0, \sigma^{2}(b)\right]$ since

$$
\alpha^{\Delta \Delta}(t)=0>-\cos 0=-1 .
$$

Next, let $\beta(t)=\int_{0}^{t}(c-s) \Delta s$ where $c=\frac{1}{\sigma^{2}(b)} \int_{0}^{\sigma^{2}(b)} \tau \Delta \tau$. Then

$$
\beta^{\Delta \Delta}(t)=-1<-\cos \beta^{\sigma}(t),
$$

so $\beta(t)$ is an upper solution on $\left[0, \sigma^{2}(b)\right]$.
Note that $\alpha(0)=0=\beta(0), \alpha\left(\sigma^{2}(b)\right)=\beta\left(\sigma^{2}(b)\right)$ and $\beta(t)=-\int_{0}^{\sigma(b)} G(t, s) \Delta s$ is a solution of BVP

$$
\begin{gathered}
\beta^{\Delta \Delta}(t)=-1 \\
\beta(0)=0, \quad \beta\left(\sigma^{2}(b)\right)=0 .
\end{gathered}
$$

Since $G(t, s) \leq 0$ for $t \in\left[0, \sigma^{2}(b)\right]$ and $s \in[0, b], \beta(t) \geq 0$ on $\left[0, \sigma^{2}(b)\right]$.
Therefore we can conclude that there is a solution $x(t)$ with

$$
0 \leq x(t) \leq \int_{0}^{t}(c-s) \Delta s
$$

on $\left[0, \sigma^{2}(b)\right]$ by Theorem 5.
In the following theorem we see that if for each fixed $t, f(t, x)$ is strictly increasing in x, then the BVP (1), (2) has a unique solution.

Theorem 7 Assume $f(t, x)$ is continuous on $[a, b] \times \mathbb{R}$ and assume for each fixed $t \in[a, b]$, $f(t, x)$ is nondecreasing in $x,-\infty<x<\infty$. Then the $B V P$ (1), (2) has a solution.
If, for each $t \in[a, b], f(t, x)$ is strictly increasing in x, then the $B V P$ (1), (2) has a unique solution.

Proof: Choose $M \geq \max \{|f(t, 0)|: t \in[a, b]\}$. Let $u(t)$ be the solution of the BVP

$$
\begin{aligned}
& u^{\Delta \Delta}(t)=M, \quad t \in[a, b] \\
& u(a)=0, \quad u\left(\sigma^{2}(b)\right)=0
\end{aligned}
$$

This implies that $u(t) \leq 0$ on $\left[a, \sigma^{2}(b)\right]$. Pick $K \geq \max \{|A|,|B|\}$.
Set

$$
\alpha(t)=u(t)-K
$$

on $\left[a, \sigma^{2}(b)\right]$. Then

$$
\begin{aligned}
\alpha^{\Delta \Delta}(t)=u^{\Delta \Delta}(t)=M & \geq f(t, 0) \\
& \geq f\left(t, \alpha^{\sigma}(t)\right)
\end{aligned}
$$

on $[a, b]$ since $f(t, x)$ is nondecreasing in x. Therefore $\alpha(t)$ is a lower solution of (1) on $\left[a, \sigma^{2}(b)\right]$. Next, let $v(t)$ be the solution of the BVP

$$
\begin{gathered}
v^{\Delta \Delta}(t)=-M, \\
v(a)=0, \quad v\left(\sigma^{2}(b)\right)=0 .
\end{gathered}
$$

This implies that $v(t) \geq 0$ on $\left[a, \sigma^{2}(b)\right]$. Then set

$$
\beta(t)=v(t)+K
$$

on $\left[a, \sigma^{2}(b)\right]$. It follows that

$$
\begin{aligned}
\beta^{\Delta \Delta}(t)=v^{\Delta \Delta}(t)=-M & \leq f(t, 0) \\
& \leq f\left(t, \beta^{\sigma}(t)\right)
\end{aligned}
$$

on $[a, b]$ since $f(t, x)$ is nondecreasing in x. Therefore $\beta(t)$ is an upper solution of (1) on $\left[a, \sigma^{2}(b)\right]$.
Note that $\alpha(a) \leq A \leq \beta(a), \quad \alpha\left(\sigma^{2}(b)\right) \leq B \leq \beta\left(\sigma^{2}(b)\right) \quad$ and $\quad \alpha(t) \leq \beta(t)$ on $\left[a, \sigma^{2}(b)\right]$.
Therefore there exits a solution $x(t)$ of the BVP (1), (2) with

$$
\alpha(t) \leq x(t) \leq \beta(t)
$$

on $\left[a, \sigma^{2}(b)\right]$ by Theorem 5 .
Now assume for each $t \in[a, b], f(t, x)$ is strictly increasing in $x,-\infty<x<\infty$. Assume $x(t)$, $y(t)$ are distinct solutions of the BVP (1), (2). Without loss of generality, assume $x(t)>y(t)$ at some points in $\left(a, \sigma^{2}(b)\right)$. This implies that $x(t)-y(t)$ has a positive maximum in $\left(a, \sigma^{2}(b)\right)$. Hence, there exists $c \in\left(a, \sigma^{2}(b)\right)$ such that

$$
\begin{aligned}
x(c) & >y(c) \\
x^{\Delta}(c) & \leq y^{\Delta}(c) \\
x^{\Delta \Delta}(\rho(c)) & \leq y^{\Delta \Delta}(\rho(c)) .
\end{aligned}
$$

But

$$
\begin{aligned}
x^{\Delta \Delta}(\rho(c)) & =f\left(\rho(c), x^{\sigma}(\rho(c))\right) \\
& >f\left(\rho(c), y^{\sigma}(\rho(c))\right) \\
& =y^{\Delta \Delta}(\rho(c))
\end{aligned}
$$

since $\sigma(\rho(c))=c$ but this contradicts the fact that $x^{\Delta \Delta}(\rho(c)) \leq y^{\Delta \Delta}(\rho(c))$. Therefore the BVP (1), (2) has a unique solution.

The following example is a simple implication of Theorem 7 .

Example 8 If $c(t), d(t)$ and $e(t)$ are right-dense continuous functions on $\left[a, \sigma^{2}(b)\right]$ with $c(t) \geq$ $0, d(t) \geq 0$ on $[a, b]$, then the BVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=c(t) x^{\sigma}(t)+d(t)[x(\sigma(t))]^{3}+e(t), \\
x(a)=A, \quad x\left(\sigma^{2}(b)\right)=B
\end{gathered}
$$

has a solution. Further if $c(t)+d(t)>0$ on $[a, b]$, then the above $B V P$ has a unique solution.
The next theorem is a generalization of the uniqueness of solutions of initial value problems(IVP's) for (1).

Theorem 9 Assume $f(t, x)$ is continuous on $[a, b] \times \mathbb{R}$ and solutions of IVPs for $x^{\Delta \Delta}=f\left(t, x^{\sigma}\right)$ are unique. Assume α and β are lower and upper solutions of (1) respectively on $\left[a, \sigma^{2}(b)\right]$ such that $\alpha(t) \leq \beta(t)$ on $\left[a, \sigma^{2}(b)\right]$. If there exists $t_{0} \in[a, \sigma(b)]$ such that

$$
\begin{aligned}
\alpha\left(t_{0}\right) & =\beta\left(t_{0}\right) \\
\alpha^{\Delta}\left(t_{0}\right) & =\beta^{\Delta}\left(t_{0}\right),
\end{aligned}
$$

then $\alpha(t) \equiv \beta(t)$ on $\left[a, \sigma^{2}(b)\right]$.
Proof: Assume $\alpha(t) \not \equiv \beta(t)$ on $\left[a, \sigma^{2}(b)\right]$.
First consider the case where $t_{0}<\sigma^{2}(b)$ and $\alpha(t)<\beta(t)$ for at least one point in $\left(t_{0}, \sigma^{2}(b)\right]$. Pick

$$
t_{1}=\max \left\{t: \alpha(s)=\beta(s), t_{0} \leq s \leq t\right\}<\sigma^{2}(b)
$$

We have two cases to consider:
Case 1: $\sigma\left(t_{1}\right)=t_{1}$.
There exists $t_{2} \in \mathbb{T}$ with $t_{1}<t_{2}$ such that $\alpha(t)<\beta(t)$ on $\left(t_{1}, t_{2}\right]$.
By Theorem 5, the BVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=f\left(t, x^{\sigma}(t)\right) \\
x\left(t_{1}\right)=\beta\left(t_{1}\right), \quad x\left(t_{2}\right)=\beta\left(t_{2}\right)
\end{gathered}
$$

has a solution $x_{1}(t)$ satisfying $\alpha(t) \leq x_{1}(t) \leq \beta(t)$ on $\left[t_{1}, t_{2}\right]$.
Similarly, the BVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=f\left(t, x^{\sigma}(t)\right), \\
x\left(t_{1}\right)=\alpha\left(t_{1}\right), \quad x\left(t_{2}\right)=\alpha\left(t_{2}\right)
\end{gathered}
$$

has a solution $x_{2}(t)$ satisfying $\alpha(t) \leq x_{2}(t) \leq \beta(t)$ on $\left[t_{1}, t_{2}\right]$.
Since $\alpha(t) \leq x_{i}(t) \leq \beta(t), i=1,2$ on $\left[t_{1}, t_{2}\right], x_{1}^{\Delta}\left(t_{1}\right)=x_{2}^{\Delta}\left(t_{1}\right)$. Since solution of IVPs are unique, $x_{1}(t) \equiv x_{2}(t)$. But this contradicts the fact that $x_{1}\left(t_{2}\right) \neq x_{2}\left(t_{2}\right)$.
Case 2: $\sigma\left(t_{1}\right)>t_{1}$.
First we need to show that $t_{1}>t_{0}$.

Assume not, then $t_{1}=t_{0}$. By assumption,

$$
\begin{aligned}
\alpha\left(t_{0}\right) & =\beta\left(t_{0}\right) \\
\alpha^{\Delta}\left(t_{0}\right) & =\beta^{\Delta}\left(t_{0}\right),
\end{aligned}
$$

and hence $\alpha\left(\sigma\left(t_{0}\right)=\beta\left(\sigma\left(t_{0}\right)\right)\right.$. But this contradicts the way t_{1} was chosen and hence $t_{1}>t_{0}$. There are two subcases:
Subcase 1: $\rho\left(t_{1}\right)<t_{1}$.
Since

$$
\begin{gathered}
\alpha\left(\rho\left(t_{1}\right)\right)=\beta\left(\rho\left(t_{1}\right)\right), \quad \alpha\left(t_{1}\right)=\beta\left(t_{1}\right) \text { and } \alpha\left(\sigma\left(t_{1}\right)\right)<\beta\left(\sigma\left(t_{1}\right)\right), \\
\beta^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right)>\alpha^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right) .
\end{gathered}
$$

But

$$
\begin{aligned}
\alpha^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right) & \geq f\left(\rho\left(t_{1}\right), \alpha^{\sigma}\left(\rho\left(t_{1}\right)\right)\right) \\
& =f\left(\rho\left(t_{1}\right), \alpha\left(t_{1}\right)\right) \\
& =f\left(\rho\left(t_{1}\right), \beta\left(t_{1}\right)\right) \\
& =f\left(\rho\left(t_{1}\right), \beta^{\sigma}\left(\rho\left(t_{1}\right)\right)\right. \\
& \geq \beta^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right)
\end{aligned}
$$

since $\alpha(t)$ and $\beta(t)$ are lower and upper solutions of (1) on $\left[a, \sigma^{2}(b)\right]$. This is a contradiction. Subcase 2: $\rho\left(t_{1}\right)=t_{1}$.
By continuity

$$
\begin{aligned}
\beta^{\Delta}\left(t_{1}\right) & =\lim _{t \rightarrow t_{1}-\beta^{\Delta}(t)} \\
& =\lim _{t \rightarrow t_{1}-} \alpha^{\Delta}(t) \\
& =\alpha^{\Delta}\left(t_{1}\right) .
\end{aligned}
$$

This implies that $\beta\left(\sigma\left(t_{1}\right)\right)=\alpha\left(\sigma\left(t_{1}\right)\right)$ and we get a contradiction to the way t_{1} was chosen. Therefore $\alpha(t) \equiv \beta(t)$ on $\left[t_{0}, \sigma^{2}(b)\right]$.
Next consider the other case where $a<t_{0}$ and $\alpha(t)<\beta(t)$ for at least one point in $\left[a, t_{0}\right)$.
This time pick

$$
t_{1}=\min \left\{t: \alpha(s)=\beta(s), t \leq s \leq t_{0}\right\}>a .
$$

We have two cases:
Case 1: $\rho\left(t_{1}\right)=t_{1}$.
There exists $t_{2} \in \mathbb{T}$ with $t_{2}<t_{1}$ such that $\alpha(t)<\beta(t)$ on $\left[t_{2}, t_{1}\right)$.
By Theorem 5, the BVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=f\left(t, x^{\sigma}(t)\right) \\
x\left(t_{1}\right)=\beta\left(t_{1}\right), \quad x\left(t_{2}\right)=\beta\left(t_{2}\right)
\end{gathered}
$$

has a solution $x_{1}(t)$ satisfying $\alpha(t) \leq x_{1}(t) \leq \beta(t)$ on $\left[t_{2}, t_{1}\right]$.

Similarly, the BVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=f\left(t, x^{\sigma}(t)\right) \\
x\left(t_{1}\right)=\alpha\left(t_{1}\right), \quad x\left(t_{2}\right)=\alpha\left(t_{2}\right)
\end{gathered}
$$

has a solution $x_{2}(t)$ satisfying $\alpha(t) \leq x_{2}(t) \leq \beta(t)$ on $\left[t_{2}, t_{1}\right]$.
Since $\alpha(t) \leq x_{i}(t) \leq \beta(t)$ for $i=1,2, t \in\left[t_{2}, t_{1}\right], x_{1}^{\Delta}\left(t_{1}\right)=x_{2}^{\Delta}\left(t_{1}\right)$. Since solutions of IVPs are unique, $x_{1}(t) \equiv x_{2}(t)$ on $\left[t_{2}, t_{1}\right]$. But this contradicts the fact that $x_{1}\left(t_{2}\right) \neq x_{2}\left(t_{2}\right)$.
Case 2: $\rho\left(t_{1}\right)<t_{1}$.
Note that $\alpha\left(t_{1}\right)=\beta\left(t_{1}\right), \alpha^{\Delta}\left(t_{1}\right)=\beta^{\Delta}\left(t_{1}\right)$ and $\alpha\left(\rho\left(t_{1}\right)\right)<\beta\left(\rho\left(t_{1}\right)\right)$. Hence

$$
\beta^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right)>\alpha^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right) .
$$

But

$$
\begin{aligned}
\alpha^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right) & \geq f\left(\rho\left(t_{1}\right), \alpha^{\sigma}\left(\rho\left(t_{1}\right)\right)\right) \\
& =f\left(\rho\left(t_{1}\right), \beta^{\sigma}\left(\rho\left(t_{1}\right)\right)\right. \\
& \geq \beta^{\Delta \Delta}\left(\rho\left(t_{1}\right)\right)
\end{aligned}
$$

and so this is a contradiction.
Therefore $\alpha(t) \equiv \beta(t)$ on $\left[a, t_{0}\right]$.
Hence $\alpha(t) \equiv \beta(t)$ on $\left[a, \sigma^{2}(b)\right]$.
In the next theorem we prove an existence-uniqueness theorem for solutions of the BVP (1), (2) where we assume $f(t, x)$ satisfies a one sided Lipschitz condition.

Theorem 10 Assume $f(t, x)$ is continuous on $[a, b] \times \mathbb{R}$, solutions of the IVPs are unique and exist on $\left[a, \sigma^{2}(b)\right]$ for (1), and there exists a right-dense continuous function $k(t)$ on $[a, b]$ such that

$$
f(t, x)-f(t, y) \geq k(t)(x-y)
$$

for $x \geq y, t \in[a, b]$.
If $x^{\Delta \Delta}=k(t) x^{\sigma}$ is disconjugate on $\left[a, \sigma^{2}(b)\right]$, then the $B V P(1)$, (2) has a unique solution.
Proof: Let $x(t, m)$ be the solution of the IVP

$$
\begin{gathered}
x^{\Delta \Delta}(t)=f\left(t, x^{\sigma}(t)\right), \\
x(a)=A, \quad x^{\Delta}(a)=m .
\end{gathered}
$$

Define $S:=\left\{x\left(\sigma^{2}(b), m\right): m \in \mathbb{R}\right\}$. By continuity of solutions on initial conditions, S is a connected set. We want to show that S is neither bounded above nor below.

Fix $m_{1}>m_{2}$ and let

$$
w(t):=x\left(t, m_{1}\right)-x\left(t, m_{2}\right) .
$$

Note that $w(a)=0$ and $w^{\Delta}(a)=m_{1}-m_{2}>0$.
Claim: $w(t)>0$ on $\left(a, \sigma^{2}(b)\right]$:

Pick

$$
t_{1}=\max \left\{t \in\left[a, \sigma^{2}(b)\right]: w(s) \geq 0 \text { for } s \in[a, t]\right\}
$$

Then

$$
\begin{aligned}
w^{\Delta \Delta}(t) & =x^{\Delta \Delta}\left(t, m_{1}\right)-x^{\Delta \Delta}\left(t, m_{2}\right) \\
& =f\left(t, x^{\sigma}\left(t, m_{1}\right)\right)-f\left(t, x^{\sigma}\left(t, m_{2}\right)\right) \\
& \geq k(t)\left[x^{\sigma}\left(t, m_{1}\right)-x^{\sigma}\left(t, m_{2}\right)\right]
\end{aligned}
$$

on $\left[a, \rho\left(t_{1}\right)\right]$.
Hence $w^{\Delta \Delta}(t)-k(t) w^{\sigma}(t) \geq 0$ on $\left[a, \rho\left(t_{1}\right)\right]$.
Define

$$
L w(t):=w^{\Delta \Delta}(t)-k(t) w^{\sigma}(t) \text { for } t \in[a, b]
$$

and let $v(t)$ be the solution of the IVP

$$
\begin{gathered}
L u(t):=u^{\Delta \Delta}(t)-k(t) u^{\sigma}(t)=0, \\
u(a)=0, \quad u^{\Delta}(a)=1 .
\end{gathered}
$$

Take

$$
v(t)=\left(m_{1}-m_{2}\right) u(t)
$$

Note that

$$
L w(t) \geq L v(t)
$$

on $\left[a, \rho\left(t_{1}\right)\right]$, and

$$
w(a)=v(a), w^{\Delta}(a)=v^{\Delta}(a)
$$

Hence $w(t) \geq v(t)$ on $\left[a, \sigma\left(t_{1}\right)\right]$ by the Comparison Theorem given by Erbe and Peterson [6, Theorem 9]. Letting $t=\sigma\left(t_{1}\right)$ we get that

$$
w\left(\sigma\left(t_{1}\right)\right) \geq v\left(\sigma\left(t_{1}\right)\right)>0
$$

using the fact that $L w(t)=0$ is disconjugacy on $\left[a, \sigma^{2}(b)\right]$.
We have two cases to consider:
Case 1: $t_{1}<\sigma\left(t_{1}\right)$.
If t_{1} is right-scattered, then $w^{\sigma}\left(t_{1}\right)<0$. But this contradicts the fact that

$$
w\left(\sigma\left(t_{1}\right)\right) \geq v\left(\sigma\left(t_{1}\right)\right)>0
$$

Case 2: $t_{1}=\sigma\left(t_{1}\right)$.
If t_{1} is right-dense, then $w\left(t_{1}\right)=0$. But this also contradicts the fact that

$$
w\left(\sigma\left(t_{1}\right)\right)=w\left(t_{1}\right) \geq v\left(\sigma\left(t_{1}\right)\right)=v\left(t_{1}\right)>0
$$

Hence $w(t)>0$ on $\left(a, \sigma^{2}(b)\right]$. In particular

$$
w\left(\sigma^{2}(b)\right) \geq\left(m_{1}-m_{2}\right) u\left(\sigma^{2}(b)\right)>0 .
$$

Fix m_{2} and let $m_{1} \rightarrow \infty$. This implies that

$$
\lim _{m_{1} \rightarrow \infty} x\left(\sigma^{2}(b), m_{1}\right)=\infty
$$

Therefore S is not bounded above. Fix m_{1} and let $m_{2} \rightarrow-\infty$. This implies that

$$
\lim _{m_{2} \rightarrow-\infty} x\left(\sigma^{2}(b), m_{2}\right)=-\infty
$$

Therefore S is not bounded below.
Hence $S=\mathbb{R}$ and so $B \in S$. This implies there is some $m_{0} \in \mathbb{R}$ such that

$$
x\left(\sigma^{2}(b), m_{0}\right)=B
$$

Hence the BVP (1), (2) has a solution. Uniqueness follows immediately from the fact that $m_{1}>m_{2}$ implies $x\left(\sigma^{2}(b), m_{1}\right)>x\left(\sigma^{2}(b), m_{2}\right)$.

References

[1] R. P. Agarwal and M. Bohner. Quadratic functionals for second order matrix equations on time scales. Nonlinear Anal., 33:675-692, 1998.
[2] R. P. Agarwal and M. Bohner. Basic calculus on time scales and some of its applications. Results Math., 35(1-2):3-22, 1999.
[3] R. P. Agarwal, M. Bohner, and P. J. Y. Wong. Positive solutions and eigenvalues of conjugate boundary value problems. Proc. Edinburgh Math. Soc., 42:349-374, 1999.
[4] K. Deimling. Nonlinear Functional Analysis. Springer, New York, 1985.
[5] L. Erbe and S. Hilger. Sturmian theory on measure chains. Differential Equations Dynam. Systems, 1(3):223-244, 1993.
[6] L. Erbe and A. Peterson. Green's functions and comparison theorems for differential equations on measure chains. Dynam. Contin. Discrete Impuls. Systems, 6(1):121-137, 1999.
[7] S. Hilger. Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math., 18:18-56, 1990.
[8] B. Kaymakçalan, V. Lakshmikantham, and S. Sivasundaram. Dynamic Systems on Measure Chains, volume 370 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1996.
[9] W. G. Kelley and A. C. Peterson. Difference Equations: An Introduction with Applications. Academic Press, San Diego, second edition, 2001.
[10] E. Zeidler. Nonlinear Functional Analysis and its applications I. Springer Verlag, New York, 1985.

