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1. INTRODUCTION

The Volterra-integro equations showed up after its foundation by Volterra and

then it has become very popular to be used in many physical applications such

as glass-forming process, nanohydrodynamics, heat transfer, diffusion process

in general, neutron diffusion and biological species coexisting together with

increasing and decreasing rates of generating, and wind ripple in the desert.

Recently, it has been investigating the stability, instability and some numerical

approximations to solutions of Volterra integral equations, see [1, 2, 3, 4, 5, 6,

7, 8] for more details.
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This paper deals with systems of the form






























x∆(t) = a(t)x(t) +

t
∫

t0

p(t, s)f(y(s))∆s

y∆(t) = −b(t)yσ(t)−

t
∫

t0

q(t, s)g(x(s))∆s

(1)

and






























x∆(t) = a(t)x(t) −

t
∫

t0

p(t, s)f(y(s))∆s

y∆(t) = b(t)y(t)−

t
∫

t0

q(t, s)g(x(s))∆s,

(2)

where f, g ∈ C(R,R) are nondecreasing such that uf(u) > 0, ug(u) > 0 for

u 6= 0, a, b ∈ Crd ([t0,∞)T,R
+) and p, q ∈ C([t0,∞)T × [t0,∞)T,R

+). A

time scale, denoted by T, is a closed subset of real numbers. For time scales

calculus we refer readers to books [9] and [10]. Throughout this paper, we

assume that T is unbounded above and whenever we write t ≥ t0, we mean

that t ∈ [t0,∞)T := [t0,∞) ∩ T.

We call (x, y) a proper solution of (1) (or (2)) if sup{|x(s)|, |y(s)| : s ∈

[t,∞)T} > 0 for t ≥ t0 and it is defined on [t0,∞)T. A solution (x, y) of (1) (or

(2)) is said to be nonoscillatory if the component functions x and y are both

nonoscillatory, i.e., either eventually positive or eventually negative. Other-

wise, it is said to be oscillatory. One can observe that if x is nonoscillatory,

then y has to be nonoscillatory. By a positive solution, we mean that x and y

have the same sign while by a negative solution we mean that x and y have

the different sign.

In [11], the authors only consider positive solutions of the following system






























x∆(t) = a(t)x(t) +

t
∫

t0

p(t, s)f(y(s))∆s

y∆(t) = b(t)y(t) +

t
∫

t0

q(t, s)g(x(s))∆s.

(3)

By the method of sign of solutions, the existence of negative solutions of system

(3) can not be obtained. Therefore, we urge to consider system (2) for the
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existence of negative solutions in Section 2. One can also consider system (1) in

which the forward jump operator σ is included. Observe that the existence of

positive solutions of (1) can be investigated, see Section 3. In both subsections,

without loss of generality we assume that the first component of such solutions

is always positive.

To reach our goal, we need the following preliminary results. If supT < ∞,

then T
κ = T\(ρ(supT), supT], and T

κ = T if supT = ∞. We say that

h1 : T → T is regressive, denoted by R, provided 1 + h1(t)µ(t) 6= 0 for t ∈ T
κ.

If h1 ∈ R, then the first order linear dynamic equation z∆ = h1(t)z is called

regressive. The exponential function on time scales eh1
(·, t0) is a solution of

the initial value problem z∆ = h1(t)z, z(t0) = 1 and it is known that if h1 ∈ R

and 1+µh1 > 0 on T
κ, then eh1

(t, t0) > 0 for all t ∈ T, see [9, Theorem 2.44].

Also if h1 ≥ 0, then eh1
(·, t0) ≥ 1, see [12, Remark 2.12]. More properties of

exponential functions on time scales can be found in [9, Theorem 2.36].

Lemma 1. [9, Theorem 2.77] Suppose that z∆ = h1z + h2 is regressive.

Let t0 ∈ T and z0 ∈ R. Then the unique solution of the initial value problem

z∆(t) = h1(t)z + h2(t), z(t0) = z0 is given by

z(t) = eh1
(t, t0)z0 +

t
∫

t0

eh1
(t, σ(τ))h2(τ)∆τ.

Next, we provide the Knaster fixed point theorem in order to show the

existence of nonoscillatory solutions of system (1) and (2), see [13].

Theorem 1 (Knaster Fixed Point Theorem). If (M,≤) is a complete lattice

and T : M → M is order-preserving (also called monotone or isotone), then

T has a fixed point. In fact, the set of fixed points of T is a complete lattice.

2. MAIN RESULTS

2.1. EXISTENCE OF POSITIVE SOLUTIONS OF SYSTEM (1)

Let M+ be the set of all positive solutions of system (1). Since the first and

second equations of system (1) give us that x and y are eventually increasing
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and decreasing, respectively, we have the following subclasses for 0 < c, d < ∞:

M+
B,B =

{

(x, y) ∈ M+ : lim
t→∞

x(t) = c, lim
t→∞

y(t) = d
}

,

M+
B,0 =

{

(x, y) ∈ M+ : lim
t→∞

x(t) = c, lim
t→∞

y(t) = 0
}

,

M+
∞,B =

{

(x, y) ∈ M+ : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = d
}

,

M+
∞,0 =

{

(x, y) ∈ M+ : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = 0
}

.

To accomplish the existence of positive solutions in subclasses given above

by using the Knaster fixed point theorem, we set

A(t) =

∞
∫

t

a(s)∆s, B(t) =

∞
∫

t

b(s)∆s,

Y1 =

∞
∫

t0





t
∫

t0

q(t, s)g(r(s))∆s



∆t,

Y2 =

∞
∫

t0





t
∫

t0

p(t, s)f



k

∞
∫

s





u
∫

t0

q(u, v)∆v



∆u



∆s



∆t,

where k > 0 and r(·) is defined for some c > 0 and x0 ≥ 0. Throughout this

paper, we assume A(t0) < ∞ and B(t0) < ∞.

Theorem 2. If Y1 < ∞ and Y2 = ∞, then M+
∞,0 6= ∅.

Proof. Suppose Y1 < ∞, Y2 = ∞ and B(t0) < ∞. Then we can choose t1 ≥ t0

and d1 > 0 such that Y1 < d1 and B(t1) <
1
2 . Let X be the Banach space of all

continuous real valued functions endowed with the norm ‖y‖ = sup
t∈[t1,∞)T

|y(t)|

and with usual pointwise ordering ≤. Define a subset Ω of X as

Ω := {y ∈ X : d1

∞
∫

t





u
∫

t0

q(u, s)∆s



∆u ≤ y(t) ≤ 2d1, t ≥ t1}.

For any subset B of Ω, it is clear that inf B ∈ Ω and supB ∈ Ω. Let us define

an operator F : Ω → X as

(Fy)(t) =

∞
∫

t

b(s)yσ(s)∆s
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+

∞
∫

t

u
∫

t0

q(u, s)g

(

ea(s, t0)x0

+

s
∫

t0

ea(s, σ(τ))





τ
∫

t0

p(τ, v)f(y(v))∆v





)

∆s

Let us show that F is an increasing mapping into itself. Indeed, for x1 ≤ x2

we have Fx1 ≤ Fx2, where x1, x2 ∈ Ω, i.e. F is an increasing mapping. Next,

we show F : Ω → Ω.. Since ea(·, t0) > 1, Y1 < 2d1, and Y2 = ∞

g(1)

∞
∫

t

u
∫

t0

q(u, s)∆s ≤ (Fy)(t)

≤ d1 +

∞
∫

t

u
∫

t0

q(u, s)g



ea(s, t0)x0 +

s
∫

t0

ea(s, σ(τ))





τ
∫

t0

p(τ, v)f(2d1)∆v







∆s

≤ 2d1

for t ≥ t1, which implies F : Ω → Ω. Then by Theorem 1, there exists ȳ ∈ Ω

such that ȳ = F ȳ. By taking the derivative of ȳ, we have

ȳ∆(t) = −b(t)ȳσ(t)

−

t
∫

t0

q(t, s)g



ea(s, t0)x0 +

s
∫

t0

ea(s, σ(τ))





τ
∫

t0

p(τ, v)f(ȳ(v))∆v



∆τ



∆s

for t ≥ t1. Setting

x̄(t) = ea(t, t0)x̄0 +

t
∫

t0

ea(t, σ(τ))





τ
∫

t0

p(τ, v)f(ȳ(v))∆v



∆τ (4)

implies

x̄∆(t) = a(t)x̄(t) +

t
∫

t0

p(t, s)f(ȳ(s))∆s,

by Lemma 1, i.e., (x̄, ȳ) is a nonoscillatory solution of system (1). Note also

that x̄(t) > 0 and ȳ(t) > 0 for t ≥ t1 because e(·, t0) > 0 and x̄(t) → ∞ and

ȳ(t) → 0 as t → ∞, i.e., M+
∞,0 6= ∅.
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The following theorem can be proven similar to Theorem 2 by setting an

operator Ty = d + Fy, where d > 0 and Fy is defined as in the proof of

Theorem 2.

Theorem 3. If Y1 < ∞ and Y2 = ∞, then M+
∞,B 6= ∅.

2.2. EXISTENCE OF NEGATIVE SOLUTIONS OF SYSTEM (2)

Let M− be the set of all negative solutions of system (2). Then by the similar

discussion as in Subsection 2.1, following subclasses are obtained for 0 < c < ∞

and −∞ < d < 0.

M−

B,B =
{

(x, y) ∈ M− : lim
t→∞

x(t) = c, lim
t→∞

y(t) = d
}

,

M−

B,∞ =
{

(x, y) ∈ M− : lim
t→∞

x(t) = c, lim
t→∞

y(t) = −∞
}

,

M−

∞,B =
{

(x, y) ∈ M− : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = d
}

,

M−

∞,∞ =
{

(x, y) ∈ M− : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = −∞
}

.

For the convenience, set

Y3 =

∞
∫

t0





t
∫

t0

p(t, s)f(h(s))∆s



∆t,

Y4 =

∞
∫

t0





t
∫

t0

q(t, s)∆s



∆t,

where h(·) is defined for some constant l and y0 = 0.

Theorem 4. If Y3 < ∞ and Y4 = ∞, then M−

B,∞ 6= ∅.

Proof. Suppose that Y3 < ∞ and Y4 = ∞. Then there exist c1 > 0 and

t1 ≥ t0 such that
∞
∫

t1





t
∫

t1

p(t, s)f(h(s))∆s



∆t <
c1

4
(5)

and A(t1) <
1
4 . Let X be the Banach space of all continuous real valued func-

tions endowed with the norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)| and with usual pointwise
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ordering ≤. Define a subset Ω of X as

Ω := {x ∈ X :
c1

2
≤ x(t) ≤ c1, t ≥ t1}.

For any subset B of Ω, it is clear that inf B ∈ Ω and supB ∈ Ω. Let us define

an operator F : Ω → X as

(Fx)(t) =
c1

2
+

t
∫

t1

a(s)x(s)∆s

−

t
∫

t1

u
∫

t1

p(u, s)f



−

s
∫

t1

eb(s, σ(τ))





τ
∫

t1

q(τ, v)g(x(v))∆v



∆τ



∆s

It could be shown that F is an increasing mapping and it is clear that (Fx)(t) >
c1
2 for t ≥ t1. Also,

(Fx)(t) ≤
c1

2
+

c1

4
+

c1

4
= c1, i.e., F : Ω → Ω.

Then by Theorem 1, there exists an x̄ ∈ Ω such that x̄ = Fx̄ and x̄ > 0

eventually. So as t → ∞, we have x̄(t) → α, where 0 < α < ∞. Taking the

derivative of x̄ yields

x̄∆(t) = a(t)x̄(t)

−

t
∫

t1

p(t, s)f



−

s
∫

t1

eb(s, σ(τ))





τ
∫

t1

q(τ, v)g(x̄(v))∆v



∆τ



∆s > 0

for t ≥ t1. Setting ȳ(t) = −
t
∫

t1

eb(t, σ(τ))

(

τ
∫

t1

q(τ, v)g(x̄(v))∆v

)

∆τ < 0 and

taking the derivative of the latter equation give us (x̄, ȳ) is a nonoscillatory

solution of system (2) by Lemma 1. In addition, one can have

ȳ(t) < −k2

t
∫

t1





τ
∫

t1

q(τ, v)∆v



∆τ, where k2 = g(
c1

2
) > 0.

since eb(·, t0) > 1. So as t → ∞, it follows ȳ(t) → −∞, i.e., M−

B,∞ 6= ∅.
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Theorem 5. Any nonoscillatory solution in M− belongs to M−

∞,∞ if

∞
∫

t0





t
∫

t0

p(t, s)∆s



∆t = ∞ and Y4 = ∞. (6)

Proof. Suppose that (x, y) is a nonoscillatory solution of system (2) in M−

and (6) hold. Then system (2) gives us x is increasing and y is decreasing

eventually. Then there exist t1 ≥ t0, k1 < 0 and k2 > 0 such that f(y(t)) ≤ k1

and g(x(t)) ≥ k2 for t ≥ t1. By integrating the first and second equations of

system (2), we have

x(t) ≥ −k1

t
∫

t1





u
∫

t0

p(u, s)∆s



∆u

y(t) ≤ −k2

t
∫

t1





u
∫

t0

q(u, s)∆s



∆u,

respectively. Then (x, y) ∈ M−

∞,∞.

3. CONCLUSION

Note that the existence in M+
B,B and M+

B,0 (bounded solutions in M+) is

not obtained in Subsection 2.1 for general time scales. The main reason for

this is as follows: When the operator is chosen depends on x, the component

function y cannot be positive, which is a contradiction to the fact x > 0

eventually. Therefore, the operators in Subsection 2.1 must depend on y.

Once the operators depend on y, limit of the component function y cannot

be bounded due to the fact that exponential function is unbounded above.

In addition, the results for system (1) can be obtained without σ in system

(1). Similarly, in Subsection 2.2, the nonemptiness of M−

∞,B and M−

B,B are

not acquired because of the exponential function. Observe also that system

(2) is considered without σ since y cannot be solved explicitly.
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[13] B. Knaster., Un théorème sur les fonctions d’ensembles., Ann. Soc. Polon.

Math. 6 (1928) 133–134.


