On the origin of recent intraplate volcanism in Australia

D. Rhodri Davies1 and Nicholas Rawlinson2
1Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
2School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

ABSTRACT

Many intraplate volcanic provinces do not appear to originate from plate-boundary processes or upwelling mantle plumes. Edge-driven convection (EDC), where a small-scale convective instability (induced by local variations in lithospheric thickness) displaces hot mantle material upward, provides an alternative hypothesis for such volcanism. Recently, EDC has been postulated as the trigger for Quaternary intraplate volcanism in Australia, due to the proximity of a craton edge. However, the Precambrian shield region of the Australian continent has a boundary that is at least 10,000 km long, yet the Newer Volcanics Province (NVP) is contained within a 400 × 100 km region. This brings into question EDC as a causal mechanism, unless nucleation at a single location can be explained. Here, we use a combination of seismic tomography and geodynamic modeling to show, for the first time, that (1) the source of the NVP is restricted to the upper mantle, and (2) mantle upwelling triggered by EDC is localized and intensified beneath the NVP as a result of three-dimensional variations in lithospheric thickness and plate motion–induced shear flow. This study helps to solve the global puzzle of why step changes in lithospheric thickness, which occur along craton edges and at passive margins, produce volcanism only at isolated locations.

INTRODUCTION

The widespread occurrence of intraplate volcanism is difficult to explain using the primary features of plate tectonics, such as subduction at convergent boundaries or upwelling at rifted margins, which are responsible for most volcanism on Earth. Instead, other mechanisms are invoked, including upwelling mantle plumes, edge-driven convection (EDC), shear-driven upwelling (SDU) of asthenosphere, and slab tear (e.g., King and Anderson, 1995, 1998; Davies and Davies, 2009; Conrad et al., 2011). The relative importance of these mechanisms is open to debate, and likely varies from one geological setting to the next.

In the case of EDC, numerical models are typically two-dimensional (2-D) and involve a step change or sharp transition in depth to the base of the lithosphere (King and Anderson, 1995). The implicit assumption in such models is that the step has significant continuity perpendicular to the plane of the experiment, such that the 2-D model is essentially a cross section of what would otherwise be a cylindrical or “Swiss roll”–type circulation pattern, with a central axis parallel to the strike of the step. Such a scenario has been invoked to explain intraplate volcanism observed along the transition between thick cratonal lithosphere and thin oceanic lithosphere (King and Ritsema, 2000). However, there are many regions where significant changes in lithospheric thickness occur, yet only a relatively small proportion of these have produced volcanism (King, 2007).

The Newer Volcanics Province (NVP) of Australia (Fig. 1), which ranges in age from 4.5 Ma to younger than 5 ka (Wellman, 1974), has been identified, on the basis of its proximity to a cratonic root, as one of ~20 volcanic provinces worldwide with a tectonic setting favorable for EDC (King, 2007). It is characterized by the existence of >700 eruption points, spread over an area >19,000 km² (Boyce, 2013), although the basaltic plains are generally <60 m thick, implying a low total eruption volume (Johnson, 1989). The distribution of volcanic centers is east-west, roughly perpendicular to the direction of current plate motion, and there is no associated age progression (Wellman, 1974).

Evidence pointing to the source of the NVP has so far been limited, with both Sr isotopic analysis (Price et al., 1997) and Re-Os isotopic analysis (McBride et al., 2001) unable to distinguish between a shallow or a deep mantle volcanic source. Global body-wave finite-frequency seismic tomography is not well resolved in southeast Australia, but on the basis of P- and S-wave images, the existence of a plume originating from the mid-mantle, centered beneath a region ~300 km southeast of the NVP, has been proposed (Montelli et al., 2006). Demidjuk et al. (2007) used simple low-Rayleigh-number, iso-viscous, 2-D numerical experiments to demonstrate that EDC can generate upwelling along an inferred step change in lithospheric thickness to the north of the NVP, which is consistent with the predictions of earlier work (e.g., King and Anderson, 1995, 1998). In a recent study, Holt et al. (2013) used geochemical analyses and thermodynamic modeling to show that the South Australian

Figure 1. Variations in P-wave velocity for three orthogonal slices taken at 100 km depth (top left), 143.7˚E (top right), and 37.4˚S (bottom left) through the southeast Australian tomography model. Horizontal limits of Newer Volcanics Province (NVP) outcrop at the surface are denoted by yellow dashed line. Two vertical cross sections also reveal the presence of the a priori crustal layer.
ever, the rapid decrease in velocity amplitude with depth that is imaged is far greater than the aforementioned estimate, making a plume scenario unlikely.

The low seismic velocities observed beneath the NVP may be due to the presence of elevated temperatures and/or partial melt, although with P-wave velocity alone, it is difficult to separate these contributions. If the anomaly is solely due to temperature, then the peak perturbation at 100 km depth would correspond to a temperature increase of ~500 °C (Cammarano et al., 2003), which is very large (plumes typically exhibit excess temperatures of 200–300 °C), notwithstanding uncertainties in the imaging results (see Figs. DR4 and DR5). At the other extreme, if the anomaly was solely due to the presence of partial melt, then the peak perturbation at 100 km depth would correspond to the presence of ~1% partial melt (Hammond and Humphreys, 2000). Exactly where along the trade-off curve between these two end members the anomaly beneath the NVP lies cannot be identified without further information, although the limited topographic response associated with the NVP would suggest that partial melt plays a significant role (Demidjuk et al., 2007).

GEODYNAMIC MODELS

Motivated by the seismic tomography results, which appear to support an upper mantle source for the NVP, we use geodynamic modeling to investigate whether EDC plays a central role in the origin of localized upwelling. To begin, we run a series of 2-D simulations to examine the relationship between the morphology and strength of EDC and two key geometrical parameters: (1) step height and (2) transition distance. We also examine the sensitivity of results to surface plate motions, thus accounting for potential contributions from SDU, which may be significant (Conrad et al., 2011). Our models solve for instantaneous mantle flow, where flow velocities and viscosities are determined in the presence of a prescribed temperature (density) field. Deformation is accommodated via a composite dislocation and dislocation creep, such that viscosity depends on temperature, pressure, and strain rate (see Table DR1 and the methods section of the Data Repository for justification of key parameter values). Calculations are undertaken using the recently developed Fluidity computational framework, which has been extensively benchmarked and validated for geodynamical simulation (e.g., Davies et al., 2011; Kramer et al., 2012).

The 2-D results (see the Data Repository and Figs. DR6 and DR7 therein) show that upwelling and downwelling velocities increase with step height, and that increasing the transition distance between thicker and thinner lithosphere displaces the convecting cell away from the base of the step. Increased plate velocities also displace the cell away from the step and result in an increase in upwelling velocity. We note that for all cases examined, peak velocities are significantly higher when accounting for the effects of dislocation creep. This important insight builds on those from previous 2-D numerical experiments (e.g., King and Anderson, 1998; Till and Elkins-Tanton, 2010; Farrington et al., 2010), which considered isoviscous or diffusion creep rheologies only.

To investigate the possible influence of 3-D effects that lie outside the plane of the experiment shown in Figure DR6, we construct a new map of the depth to the base of the lithosphere by combining constraints from a regional model and the new tomography results shown in Figure 1 (see the Data Repository). The new map (Fig. 2A) shows that the main “lithospheric step” is strongly modulated by variations in the third dimension. The NVP, which is located to the south of the step, lies at one end of a salient of thin lithosphere that extends northward toward the main step. For the purposes of regional 3-D geodynamic modeling, we distill this map into its key first-order features (Fig. 2B), which include several lithospheric steps in the neighborhood of the NVP. Our primary goal
is to determine whether or not such complex 3-D lithospheric structure can explain the localization of volcanism to the NVP region; it is not to understand the temporal evolution of the NVP or surrounding lithosphere (although this is an important avenue for future research), therefore motivating the use of instantaneous flow models. In these models, we impose a 6.7 cm/yr N35E plate motion, which is approximately parallel to the northeast-trending salient of thinner lithosphere. Otherwise, all model parameters are identical to those of the 2-D experiments.

Figure 3 illustrates the regional 3-D modeling results, which predict maximum upwelling velocities of ~1.75 cm/yr (or ~1.10 cm/yr if dislocation creep is excluded). These large upwelling velocities are localized to a region that lies almost directly beneath the surface expression of the NVP and also dip toward the main lithospheric step, which is consistent with the tomographic observations of a northward-dipping low-velocity structure. When compared to a case that neglects surface plate motions (Fig. DR8a), (1) upwelling rates are slightly greater, which is consistent with the predictions from our 2-D models (Fig. DR7, right); (2) the edge-driven cell beneath the NVP is displaced away from the lithospheric step; and (3) the cell is isolated to the shallow asthenosphere (for the case with no plate motion, the cell extends to the base of the domain), which is consistent with the tomographic images.

To investigate how the orientation of a lithospheric step relative to the direction of plate motion influences upwelling rates, we ran a generic 3-D simulation in which an isolated lithospheric “keel,” with a step height and transition distance that are identical to those of the main lithospheric step of our regional model, is used to induce EDC. The effects of SDU are subsequently superimposed, via the addition of 6.7 cm/yr plate motion (Fig. 4). In the absence of plate motion, EDC cells of equal strength are generated along all lithospheric steps, regardless of orientation. However, in the presence of plate motion, upwelling velocities are (1) enhanced on the lithospheric step where the mantle flows toward the craton, (2) reduced where the mantle flows away from the craton, (2) reduced where the mantle flows toward the craton, and (3) marginally reduced on steps that are oriented parallel to the direction of plate motion. The most significant result of this test is that peak upwelling velocities, in the presence (absence) of plate motion, are ~1.15 (0.85) cm/yr, which is only ~65% (~50%) of that predicted beneath the NVP in our regional model (Fig. 3). This highlights the significant role played by 3-D lithospheric depth variations, which allow adjacent edge-driven cells to coalesce, thus enhancing and localizing mantle upwelling. Moreover, the interaction of EDC and plate motion–induced shear flow is important, not only for increasing upwelling velocities, but also for focusing flow toward the NVP, via the (lower pressure) narrow salient of thin lithosphere.

The answer to the question of how mantle upwelling rates are related to melt production is not straightforward and depends on many factors (e.g., Raddick et al., 2002). For the upwelling rates associated with EDC, a prerequisite for melting is that the mantle must be close to its solidus, a condition that is met in our regional 3-D model, where temperatures within ~10
K of the wet (0.1 wt%) peridotite solidus are achieved at ~4 GPa (Katz et al., 2003). An estimate for melt production in an EDC-type scenario with an upwelling velocity of 1.5 cm/yr (comparable to our predictions for the NVP) places the rate of melt production (defined as the thickness of a horizontal layer formed by the accumulation of melt) at 2.5 km/m.y. (Conrad et al., 2010). However, the fraction of this amount that would erupt at the surface is unclear, so a direct comparison with NVP eruption volumes is not meaningful.

Variations in composition may also have a strong influence on melting: Demidjuk et al. (2007) showed that the NVP basalts with the largest 206/238Th excesses contain enriched Sr-Nd isotope ratios, which they claim is evidence for substantial melting in the mantle. Convective entrainment of lithospheric material along the trailing edge of the cratonic keel, or inherited variability in the asthenosphere, are proposed as two possible sources of this enhanced fertility (Demidjuk et al., 2007). As noted previously, Holt et al. (2013) suggested that South Australian NVP basalts were produced by decompressional melting in the sublithospheric mantle. Their results imply upwelling rates of 1–2 cm/yr, which are consistent with those predicted beneath the NVP in our regional 3-D geodynamic model. Furthermore, the melt segregation pressures of 3–4 GPa calculated by Holt et al. (2013) coincide with our geotherm’s closest approach to the peridotite solidus, providing further support to EDC, enhanced by plate motion–induced shear flow, as a causal mechanism.

CONCLUSIONS

This study is the first to document the behavior of EDC and SDU within a detailed 3-D framework, illustrating the importance of local variations in lithospheric thickness and plate motion in the localization of intraplate volcanism. A key outcome of this study is that it has yielded a geodynamic mechanism—consistent with detailed tomographic imaging—that explains shallow and localized upwelling beneath the NVP. Another important outcome is that although changes in lithospheric thickness are sufficient to trigger EDC, SDU is also vital for increasing upwelling rates, restricting circulation to the uppermost asthenosphere (see Fig. DR8) and displacing the edge-driven cell away from the lithospheric step (in this case, south toward the NVP). With this knowledge, the stage is set for future studies to investigate the temporal and spatial evolution of this system. Such studies may help to explain why the NVP is such a recent feature, and why southeast Australia has experienced intermittent low-volume intraplate volcanism for the past 190 m.y.

ACKNOWLEDGMENTS

We thank John Foden, Maxim Ballmer, and an anonymous reviewer for constructive comments on the original manuscript. Davies acknowledges Cian Wilson and Stephan Kramer for support with Fluidity. Numerical simulations were undertaken at the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

REFERENCES CITED

Manuscript received 17 July 2014
Revised manuscript received 2 September 2014
Manuscript accepted 3 September 2014
Printed in USA