MINERALOGY

Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite

Oliver Tschauner,1* Chi Ma,2 John R. Beckett,2 Clemens Prescher,3 Vitali B. Prakapenka,3 George R. Rossman2

Meteorites exposed to high pressures and temperatures during impact-induced shock often contain minerals whose occurrence and stability normally confine them to the deeper portions of Earth’s mantle. One exception has been MgSiO3 in the perovskite structure, which is the most abundant solid phase in Earth. Here we report the discovery of this important phase as a mineral in the Tenham L6 chondrite and approved by the International Mineralogical Association (specimen IMA 2014-017). MgSiO3-perovskite is now called bridgmanite. The associated phase assemblage constrains peak shock conditions to ~24 gigapascals and 2300 kelvin. The discovery concludes a half century of efforts to find, identify, and characterize a natural specimen of this important mineral.

Fig. 1. Scanning electron microscope image of a bridgmanite-akimotoite aggregate. The backscatter electron image reveals an aggregate of submicrometer-sized crystals of bridgmanite and akimotoite enclosed in (Mg,Fe)SiO3 glass and within a Tenham shock-melt vein. Majorite is found in the vein matrix. The bridgmanite-akimotoite clast is a pseudomorph after pyroxene that was trapped in the melt. This observation is consistent with an earlier report about the possible occurrence of bridgmanite with akimotoite in Tenham (16).
breakdown of rock-forming (Mg,Fe)\textsubscript{2}SiO\textsubscript{4} into (Mg,Fe)O periclase and (Mg,Fe)SiO\textsubscript{3} bridgmanite in the lower mantle of Earth below a depth of 660 km (1–5). Bridgmanite remains stable to the D\# layer, nearly down to the core-mantle boundary region at a depth of 2800 km (7). Thus, bridgmanite makes up about 38 volume % of the entire Earth (4). The chemical and physical properties of bridgmanite have a large influence on elemental distribution, mass flow, and heat flow within Earth’s mantle. Numerous efforts have all failed to find a naturally occurring example of this elusive mineral for several reasons. Most importantly, (Mg,Fe)SiO\textsubscript{3} in the perovskite structure is stable only at very high pressures and temperatures (8). The mineral is metastable under ambient conditions but vitrifies above temperatures as low as 310 K (9). The exhumation of rocks originating in the lower mantle is far too slow to permit the preservation of terrestrial bridgmanite, although inclusions in some diamonds from such rocks have been interpreted as the breakdown products of bridgmanite (10, 11). Heavily shocked meteorites provide an alternative route for preserving bridgmanite. Pressures and temperatures during the shock event can be high enough to stabilize bridgmanite, and the release to ambient conditions may be sufficiently fast to kinetically inhibit breakdown reactions. As a result, several high-pressure phases known to be stable only deep within Earth’s mantle have been found as minerals in these meteorites (12–18). These observations instigated decades of efforts to find and characterize bridgmanite in shocked meteorites (15–19). Meticulous transmission electron microscopy examination yielded indications of the presence of bridgmanite in chondritic and martian meteorites (15–19). However, rapid vitrification in the electron beam, a lack of adequate sets of reflections for unique crystallographic indexing, and the absence of quantitative structure factor moduli rendered these observations insufficient to characterize a new mineral.

A different approach to the search for bridgmanite lies in using microfocused high-energy synchrotron x-ray beams instead of electron beams for diffraction. The intense high-energy x-ray beam does little to damage bridgmanite because of its low absorbance. Micro-focusing and novel fast readout area detector techniques permit efficient mapping of possible host regions in shocked meteorites (20). Our search focused on shock-melt veins and their inclusions, which were previously identified as the hosts of other high-pressure silicate phases (12–20). In particular, we examined the highly shocked Tenham L6 chondrite and identified bridgmanite in clasts within the shock-melt veins. We found bridgmanite always associated with akimotoite but never as isolated crystals in the melt vein. These two phases along with a vitreous matrix whose composition is identical within error to that of the bridgmanite (table S1) replace precursor orthopyroxene crystals trapped within a melt vein (Fig. 1 and fig. S1). We interpret this assemblage to reflect bridgmanite that partially vitrified upon release from the shock state on the parent body or during its residence on Earth after its fall in 1879. We hypothesize that the volume expansion upon transformation from bridgmanite or dense glass into normal glass by ~ 33% (21) and 1 to 2% (22), respectively, induces stresses in the surrounding rock that help preserve the remaining bridgmanite.

Bridgmanite assumes the Pnma perovskite structure with unit cell parameters \(a = 5.02 \pm 0.03\) \(\text{Å}\), \(b = 6.90 \pm 0.03\) \(\text{Å}\), and \(c = 4.81 \pm 0.02\) \(\text{Å}\), which yields a unit cell volume of 167 \(\pm \) 2 \(\text{Å}^3\) (Fig. 2) (23). The uncertainties (\(\pm\) SEM) are from (i) uncertainty in the Rietveld refinement (see Fig. 2) and (ii) variations in cell parameters due to varying chemical composition (fig. S2). Akimotoite and ringwoodite also contribute to the diffractogram pattern. The average composition of the type material (table S1) has a formula unit of (Mg\textsubscript{0.75}Fe\textsubscript{0.20}Na\textsubscript{0.03}Ca\textsubscript{0.02}Mn\textsubscript{0.01})Si\textsubscript{1.00}O\textsubscript{3} (23). The composition is well within the range of synthetic bridgmanites, despite being a quite sodic and Fe-rich composition in comparison (fig. S2).

The cell volume of natural bridgmanite lies on an extension of the trend of volume expansion along with increasing Fe3+ content (24), which is consistent with a large amount of ferric iron as
compared to synthetic bridgmanites (Fig. 3). As noted above, the holotype specimen of bridgmanite also contains high concentrations of Na. This may extend the stability field of bridgmanite (25) and supports charge balance for ferric iron via Na-Fe\(^{3+}\)–coupled substitution in holotype bridgmanites at redox conditions below the 2. A. E. Ringwood, 1102 Geophys. Res. Lett.

REFERENCES AND NOTES

23. See the supplementary materials.

ACKNOWLEDGMENTS

The crystallographic information about bridgmanite is available at the Inorganic Crystal Structure Database and American Mineralogist databases and in the supplementary materials. This work was supported by U.S. Department of Energy (DOE) award DESC0005278, NASA grant NNX12AH63G, and NSF grants EAR-1128799, DE-FG02-94ER44666, EAR-0318538, and DMR-0950065. Part of this work was performed at GeoSoilEnviRCARS (Sector 13). Advanced Photon Source, Argonne National Laboratory. GeoSoilEnviRCARS is supported by NSF-EAR-1128799 and DE-FG02-94ER44666. The Advanced Photon Source, a DOE Office of Science User Facility, is operated by Argonne National Laboratory under contract no. DE-AC02-06CH11357. We thank reviewers N. Ross and T. Sharp for their helpful comments.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/346/6213/1100/suppl/DC1

DATA TABLES

Tables S1 and S2.

30 July 2014; accepted 22 October 2014

10.1126/science.1259369

CHEMICAL OCEANOGRAPHY

Increasing anthropogenic nitrogen in the North Pacific Ocean

Il-Nam Kim, Kitack Lee, Nicolas Gruber, David M. Karl, John L. Bullister, Simon Yang, Tae-Wook Kim

The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition to the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.

The rate of deposition of reactive nitrogen (i.e., NO\(_3\) + NH\(_3\) and dissolved organic forms; see supplementary text S1) from the atmosphere to the open ocean has more than doubled globally over the past 100 years (1), reaching a magnitude that is comparable to about half of the global ocean N\(_2\) fixation (2). The increase in atmospheric nitrogen deposition (AND) is particularly acute in the North Pacific Ocean (NPO) due to rapid population growth and burgeoning industrial activity in northeastern Asian countries. These changes in northeast Asia have markedly increased reactive nitrogen fluxes in the adjacent marine environment (3, 4), largely through atmospheric transport by westerly winds and subsequent deposition. Though it has been recognized that such an increasing addition of reactive nitrogen to the ocean could lead to major changes in the upper ocean nitrogen cycle and biological productivity (3), the majority of studies conducted to date have suggested that the impact is small and not detectable (3), even in near-shore environments and marginal seas (3). A recent study directly comparing nutrient measurements made over more than two decades showed that nitrate (N) concentration has increased in the northeast Asian marginal seas and that this increase was probably due to strongly growing AND (3). Here we extend this analysis to the entire NPO and show that the anthropogenic influence has already affected the open-ocean nitrogen cycle.

Owing to a lack of basin-wide, nutrient concentration data of sufficient duration (decades) at strategic locations, we reconstructed the temporal changes in N across the NPO using a method based on the relation between the excess of N in a water parcel relative to that expected based on the phosphate (P) concentration and the chlorofluorocarbon-12 (CFC-12)–derived ventilation age of that water parcel (6) (supplementary text S2). The excess in N relative to P—i.e., N\(^{\text{excess}}\) (7, 8)—at each sampling location was calculated as: N\(^{\text{excess}}\) = N – R\(_{NP}\)P, where N and P are the measured concentrations and R\(_{NP}\) is the Redfield ratio of 16:1. Because of increasing

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/346/6213/1100/suppl/DC1

DATA TABLES

Tables S1 and S2.

30 July 2014; accepted 22 October 2014

10.1126/science.1259369
A mineral name for mantle perovskite

A rock from outer space finally puts a name to Earth's most abundant mineral, frequently referred to as perovskite. Mineral names are only bestowed on specimens that are found in nature and characterized. Tschauner et al. isolate a magnesium silicate in the perovskite structure, now called bridgmanite, in the Tenham L6 chondrite meteorite (see the Perspective by Sharp). Bridgmanite formed in this meteorite during a high-pressure and -temperature shock event. Other minerals associated with bridgmanite allow the pressure-temperature conditions to be narrowly bound, giving insight into the shock process. The long-sought-after specimen finally puts to rest a confusing nomenclature of this dense deep mantle silicate.

Science, this issue p. 1100; see also p. 1057

REFERENCES

This article cites 64 articles, 10 of which you can access for free
http://science.sciencemag.org/content/346/6213/1100#BIBL