1. Rewrite
\[u + 2v + 3w = 7, \quad 2u + 5v + 6w = 1, \quad 3u + 6v + 7w = 1 \]
as an equation \(Ax = b \), find the \(LDU \) Decomposition of \(A \), find \(c \) such that \(Lc = b \), and find \(x \) such that \(DUx = c \). Give the solution of the original problem and check your solution.

2. Given are the two matrices
\[A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 6 & 7 \end{bmatrix}. \]
Find \(AA^T \), \(B^T A \), \(I - A \), \(2B \), \(A^{-1} \), \(R(A) \), \(N(A) \), \(R(B^T) \), and \(N(B) \).

3. Is the set of vectors in \(\mathbb{R}^3 \) that have zero as the second component a subspace of \(\mathbb{R}^3 \)? How about the set of vectors in \(\mathbb{R}^3 \) that have a nonnegative number as the second component? (Prove your claims, of course).

4. Let \(B \), \(C \), and \(X \) be real \(n \times n \)-matrices that satisfy
\[X^T X + B^T X + X^T B + C = 0 \]
Show that under these assumptions \(C \) must be necessarily symmetric.