38. Show that \(y_1(t) = t + 1 \) and \(y_2(t) = 2t + 4 \) solve the equation \(y = ty' + (y')^2 \) but that \(\alpha y_1 + \beta y_2 \) in general is not a solution. Why does this not contradict Theorem 3.5 as presented in the lecture?

39. Find two solutions of the equation \(t^2y'' - 2ty' + 2y = 0 \) such that their Wronskian is not zero (hint: try \(t^n \)). Calculate this Wronskian and give the interval where the solution is valid. Finally, find the solution of the equation that satisfies \(y(1) = 3 \) and \(y'(1) = 4 \).

40. Consider the problem \(t^2y'' + 3ty' + y = 0 \).

 (a) For which interval can we ensure the existence of a solution?

 (b) Find a solution \(y_1 \) of the form \(y_1(t) = t^\alpha \) for some real number \(\alpha \).

 (c) To find another solution, try \(y_2(t) = v(t)y_1(t) \) for some function \(v \).

 (d) Make sure that the Wronskian of \(y_1 \) and \(y_2 \) is not zero (if it is zero, try (a) and (b) again).

 Find this Wronskian.

 (e) Now find the solution that satisfies \(y(e) = \frac{e^2}{e} \) and \(y'(e) = \frac{e^2}{e^2} \).

41. Use steps similar as in the previous problem to solve \(2t^2y'' + 3ty' - y = 0 \), \(y(1) = 3 \), \(y'(1) = 0 \).

42. Find the general solutions of the following equations:

 (a) \(y'' - 2y' + 2y = 0 \);

 (b) \(y'' + 6y' + 13y = 0 \);

 (c) \(y'' + 2y' + 2y = 0 \);

 (d) \(4y'' + 9y = 0 \);

 (e) \(y'' + y' + y = 0 \);

 (f) \(y'' + 4y' + 6.25y = 0 \).

43. For each of the following initial value problems, find the solution.

 (a) \(y'' + 4y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \);

 (b) \(y'' + 4y' + 5y = 0 \), \(y(0) = 1 \), \(y'(0) = 0 \);

 (c) \(y'' - 2y' + 5y = 0 \), \(y(\frac{\pi}{2}) = 0 \), \(y'(\frac{\pi}{2}) = 2 \);

 (d) \(y'' - 2.5y' + y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \).

44. For the following equations, find one solution \(y_1 \) using the characteristic polynomial, and then try to find a second solution by trying \(y_2(t) = v(t)y_1(t) \) for some function \(v \) that needs to be determined. Make sure that the Wronskian of \(y_1 \) and \(y_2 \) is not zero. Then find the solution \(y \) with \(y(0) = 0 \) and \(y'(0) = 1 \).

 (a) \(y'' - 2y' + y = 0 \);

 (b) \(y'' - 4y' + 4y = 0 \);

 (c) \(y'' - 6y' + 9y = 0 \).