39. Solve the following initial value problems:

(a) \(y'' - 3y' - 10y = 0 \). First, \(y(0) = 1 \), \(y'(0) = 0 \). Next, \(y(0) = 0 \), \(y'(0) = 1 \);

(b) \(6y'' - 5y' + y = 0 \). First, \(y(0) = 4 \), \(y'(0) = 0 \). Next: \(y(0) = 0 \), \(y'(0) = 0 \);

(c) \(y'' + 3y' = 0 \), \(y(0) = -2 \), \(y'(0) = 3 \);

(d) \(6y'' - 7y' + 2y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \);

(e) \(2y'' - 3y' + y = 0 \), \(y(0) = 2 \), \(y'(0) = \frac{1}{2} \);

(f) \(y'' + 4y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \);

(g) \(y'' + 4y' + 5y = 0 \), \(y(0) = 1 \), \(y'(0) = 0 \);

(h) \(y'' - 2y' + 5y = 0 \), \(y\left(\frac{\pi}{2}\right) = 0 \), \(y'\left(\frac{\pi}{2}\right) = 2 \);

(i) \(y'' - 2.5y' + y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \);

(j) \(y'' - 2y' + y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \);

(k) \(y'' - 4y' + 4y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \);

(l) \(y'' - 6y' + 9y = 0 \), \(y(0) = 0 \), \(y'(0) = 1 \).

40. Consider the equation \(y'' = y \).

(a) Sketch the solutions \(c \) with \(y(0) = 1 \) and \(y'(0) = 0 \) and \(s \) with \(y(0) = 0 \) and \(y'(0) = 1 \).

(b) Show that \(c^2(t) - s^2(t) = 1 \) for all \(t \). Also, prove that \(c' = s \) and \(s' = c \).

(c) Draw the arch \(y(x) = -127.7c\left(\frac{x}{127.7}\right)^2 + 757.7 \). How high is it? How long is it’s base?

41. Find the Wronskian of the given pair of functions:

(a) \(e^{-2t} \) and \(te^{-2t} \); (b) \(e^{-2t} \) and \(\frac{3}{5}e^{-2t} \); (c) \(\cos t \) and \(\sin t \);

(d) \(\cosh t \) and \(\sinh t \); (e) \(t^n \) and \(t^m \); (f) \(t^n \) and \(mt^n \);

(g) \(t \) and \(te^t \); (h) \(\cos^2 t \) and \(1 + \cos(2t) \).

42. If the Wronskian of \(y_1 \) and \(y_2 \) is \(3e^{4t} \) and if \(y_1(t) = e^{2t} \), find \(y_2 \).

43. Consider the second order linear equation with constant coefficients \(ay'' + by' + cy = 0 \).

(a) Solve the IVP consisting of the equation and the initial conditions \(y(t_0) = y_0 \) and \(y'(t_0) = y'_0 \).

(b) Calculate the Wronskian of any two solutions of the equation.

Hint: You will need to work on three cases for each (a) and (b).