44. Find the general solution of \(y'' + 6y' + y' - 34y = 0 \) if it is known that \(y_1(t) = e^{-4t} \cos t \) is one solution.

45. Find the general solution of the equations in \# 39 (a)–(c) by using the method presented in Example 3.7 (f) from the lecture notes, i.e., rewrite the second-order equation as a system of first-order equations and find the eigenvalues and eigenvectors of the corresponding matrix.

46. Find two solutions of the equation \(t^2y'' - 2ty' + 2y = 0 \) such that their Wronskian is not zero (hint: try \(y(t) = t^\alpha \)). Calculate this Wronskian and give the interval where the solution is valid. Finally, find the solution of the equation that satisfies \(y(1) = 3 \) and \(y'(1) = 4 \).

47. Consider the problem \(t^2y'' + 3ty' + y = 0 \).

(a) Find a solution \(y_1 \) of the form \(y_1(t) = t^\alpha \) for some real number \(\alpha \).

(b) To find another solution, try \(y_2(t) = v(t)y_1(t) \) for some function \(v \).

(c) Make sure that the Wronskian of \(y_1 \) and \(y_2 \) is not zero (if it is zero, try (a) and (b) again). Find this Wronskian.

(d) Now find the solution that satisfies \(y(e) = \frac{e + 2}{6} \) and \(y'(e) = \frac{e - 2}{e^2} \).

48. Use steps similar as in the previous problem to solve \(2t^2y'' + 3ty' - y = 0 \), \(y(1) = 3 \), \(y'(1) = 0 \).

49. (First order difference equations)

(a) Let \(x_0 = 1 \) and double this number to obtain \(x_1 \), double it again to obtain \(x_2 \) and so on. Find a formula for \(x_n, n = 0, 1, 2, \ldots \) Use it to give \(x_{20} \).

(b) Let \(x_0 = 1 \) and multiply this number by \(p \) and add \(f \) to obtain \(x_1 \), multiply it again by \(p \) and add \(f \) to obtain \(x_2 \) and so on. Find a formula for \(x_n, n = 0, 1, 2, \ldots \) Use it to give \(x_{20} \).

50. (Second order difference equations)

(a) Let \(x_0 = x_1 = 1 \). Add both numbers to obtain \(x_2 \), then add \(x_1 \) and \(x_2 \) to obtain \(x_3 \) and so on. Find a formula for \(x_n, n = 0, 1, 2, \ldots \) (Hint: Try \(x_n = r^n \) and use similar techniques as for differential equations). Use it to give \(x_{20} \).

(b) Let \(x_0 = 0, x_1 = 1 \). Multiply \(x_1 \) by \(\frac{5}{2} \) and subtract \(x_0 \), to obtain \(x_2 \), then multiply \(x_2 \) by \(\frac{5}{2} \) and subtract \(x_1 \) to obtain \(x_3 \) and so on. Find a formula for \(x_n, n = 0, 1, 2, \ldots \) Use it to give \(x_{20} \).