56. Find the Fourier coefficients of \(f \) on \([-l, l] \) if \(f \) is
 (a) even;
 (b) odd.

57. Find the Fourier coefficients of \(f \) on \([-\pi, \pi] \) for
 (a) \(f(x) = x \);
 (b) \(f(x) = |x| \);
 (c) \(f(x) = |\sin x| \);
 (d) \(f(x) = x^2 \);
 (e) \(f(x) = \cosh(\alpha x), \alpha \neq 0 \).

58. For the set of real-valued polynomials on \([-1, 1] \), show that \(p \)
defined by \(p(x) = x \) is orthogonal to every constant function.
Next, find a quadratic polynomial that is orthogonal to both \(p \)
and the constant functions. Finally, find a cubic polynomial that
is orthogonal to all quadratic polynomials. Hence construct an
orthonormal set with three vectors.

59. Find \(\sum_{k=1}^{n} \sin(k\theta) \).

60. For \(|a| < 1\), find
 (a) \(\sum_{n=0}^{\infty} a^n \cos(n\theta) \);
 (b) \(\sum_{n=1}^{\infty} a^n \sin(n\theta) \).

61. Let \(e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx} \), where \(x \in (-\pi, \pi) \). Let \(f \) be continuous and
 2\(\pi \)-periodic on \(\mathbb{R} \). Put \(f_m = \sum_{n=-m}^{m} \langle f, e_n \rangle e_n \) and \(F_m = \frac{1}{m+1} \sum_{k=0}^{m} f_k \).
 (a) Establish the formula \(F_m(y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) K_m(y-x) dx \), where
 \(K_m(\theta) = \frac{1}{m+1} \sum_{k=0}^{m} \sum_{n=-k}^{k} e^{in\theta} \) is the so-called Fejér kernel.
 (b) Show that \(K_m(\theta) = \frac{1}{m+1} \frac{\sin \frac{(m+1)\theta}{2}}{\sin \frac{\theta}{2}} \) if \(\theta \neq 2\pi n \) for some \(n \in \mathbb{Z} \).
 (c) Prove: \(F_m(y) - f(y) = \frac{1}{2\pi} \int_{y-\pi}^{y+\pi} [f(x) - f(y)] K_m(y-x) dx \).
 (d) Draw the graph of \(K_m \) for \(m \in \{2, 5, 8\} \).