Introduction to Real Analysis (Math 315)

Spring 2005 Lecture Notes

Martin Bohner

Version from April 20, 2005

Author address:

Department of Mathematics and Statistics, University of Missouri–Rolla, Rolla, Missouri 65409-0020

E-mail address: bohner@umr.edu *URL*: http://www.umr.edu/~bohner

Contents

Chapte	r 1. The Riemann–Stieltjes Integral	1
1.1.	Functions of Bounded Variation	1
1.2.	The Total Variation Function	1
1.3.	Riemann–Stieltjes Sums and Integrals	2
1.4.	Nondecreasing Integrators	3
Chapte	r 2. Sequences and Series of Functions	5
2.1.	Uniform Convergence	5
2.2.	Properties of the Limit Function	5
2.3.	Equicontinuous Families of Functions	6
2.4.	Weierstraß' Approximation Theorem	7
Chapte	r 3. Some Special Functions	9
3.1.	Power Series	9
3.2.	Exponential, Logarithmic, and Trigonometric Functions	10
3.3.	Fourier Series	10
3.4.	The Gamma Function	12
Chapter	r 4. The Lebesgue Integral	13
4.1.	The Lebesgue Measure	13
4.2.	Measurable Functions	14
4.3.	Summable Functions	15
4.4.	Integrable Functions	16
4.5.	The Spaces L^p	17
4.6.	Signed Measures	18

CONTENTS

CHAPTER 1

The Riemann–Stieltjes Integral

1.1. Functions of Bounded Variation

Definition 1.1. Let $a, b \in \mathbb{R}$ with a < b. A partition P of [a, b] is a finite set of points $\{x_0, x_1, \ldots, x_n\}$ with

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b.$$

The set of all partitions of [a, b] is denoted by $\mathcal{P} = \mathcal{P}[a, b]$. If $P \in \mathcal{P}$, then the norm of $P = \{x_0, x_1, \ldots, x_n\}$ is defined by

$$||P|| = \sup_{1 \le i \le n} \Delta x_i, \quad \text{where} \quad \Delta x_i = x_i - x_{i-1}, \quad 1 \le i \le n.$$

Definition 1.2. Let $f : [a, b] \to \mathbb{R}$ be a function. We put

$$\bigvee (P, f) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \quad \text{for} \quad P = \{x_0, \dots, x_n\} \in \mathcal{P}.$$

The *total variation* of f on [a, b] is defined as

$$\bigvee_{a}^{b} f = \sup_{P \in \mathcal{P}} \bigvee (P, f).$$

If $\bigvee_{a}^{b} f < \infty$, then f is said to be of bounded variation on [a, b]. We write $f \in BV[a, b]$.

Example 1.3. If f is nondecreasing on [a, b], then $f \in BV[a, b]$.

Theorem 1.4. If $f' \in B[a, b]$, then $f \in BV[a, b]$.

Theorem 1.5. $BV[a, b] \subset B[a, b]$.

1.2. The Total Variation Function

Lemma 1.6. $BV[a, b] \subset BV[a, x]$ for all $x \in (a, b)$.

Definition 1.7. For $f \in BV[a, b]$ we define the total variation function $v_f : [a, b] \to \mathbb{R}$ by

$$v_f(x) = \bigvee_a^x f$$
 for all $x \in [a, b]$.

Lemma 1.8. If $f \in BV[a, b]$, then v_f is nondecreasing on [a, b]. **Lemma 1.9.** If $f \in BV[a, b]$, then $v_f - f$ is nondecreasing on [a, b]. **Theorem 1.10.** $f \in BV[a, b]$ iff f = g - h with on [a, b] nondecreasing functions g and h.

1. THE RIEMANN–STIELTJES INTEGRAL

1.3. Riemann–Stieltjes Sums and Integrals

Definition 1.11. Let $f, g : [a, b] \to \mathbb{R}$ be functions. Let $P = \{x_0, \ldots, x_n\} \in \mathcal{P}[a, b]$ and $\xi = (\xi_1, \ldots, \xi_n)$ such that

$$x_{k-1} \le \xi_k \le x_k$$
 for all $1 \le k \le n$.

Then

$$S(P,\xi,f,g) = \sum_{k=1}^{n} f(\xi_k) \left[g(x_k) - g(x_{k-1}) \right]$$

is called a *Riemann–Stieltjes sum* for f with respect to g. The function f is called *Riemann–Stieltjes integrable* with respect to g over [a, b], we write $f \in \mathcal{R}(g)$, if there exists a number J with the following property:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall P \in \mathcal{P}, \; \|P\| < \delta: \; |S(P,\xi,f,g) - J| < \varepsilon$$

(independent of ξ). In this case we write

$$\int_{a}^{b} f dg = J_{a}$$

and J is called the *Riemann–Stieltjes integral* of f with respect to g over [a, b]. The function f is also called *integrand* (function) while g is called *integrator* (function).

Theorem 1.12 (Fundamental Inequality). If $f \in B[a, b]$, $g \in BV[a, b]$, and $f \in \mathcal{R}(g)$, then

$$\left|\int_{a}^{b} f dg\right| \leq \|f\|_{\infty} \bigvee_{a}^{b} g,$$

where $||f||_{\infty} = \sup_{a \le x \le b} |f(x)|$.

Example 1.13. If g(x) = x for all $x \in [a, b]$, then $f \in \mathcal{R}(g)$ iff $f \in \mathbb{R}[a, b]$.

Example 1.14. $f \in C[a, b]$ and $g(x) = \begin{cases} 0 & \text{if } a \le x \le t \\ p & \text{if } t < x \le b. \end{cases}$

Theorem 1.15. Let $f \in \mathbb{R}[a, b]$ and $g' \in \mathbb{C}[a, b]$. Then

$$f \in \mathcal{R}(g)$$
 and $\int_{a}^{b} f dg = \int_{a}^{b} f g'.$

Example 1.16. $\int_0^1 x d(x^2) = 2/3.$

Theorem 1.17. If $f \in \mathcal{R}(g) \cap \mathcal{R}(h)$, then

$$f \in \mathcal{R}(g+h)$$
 and $\int fd(g+h) = \int fdg + \int fdh.$

If $f \in \mathcal{R}(h)$ and $g \in \mathcal{R}(h)$, then

$$f + g \in \mathcal{R}(h)$$
 and $\int (f + g)dh = \int fdh + \int gdh.$

If $f \in \mathcal{R}(g)$ and $\rho \in \mathbb{R}$, then

$$\rho f \in \mathcal{R}(g), \ f \in \mathcal{R}(\rho g), \quad and \quad \int (\rho f) dg = \int f d(\rho g) = \rho \int f dg.$$

Lemma 1.18. If $f \in \mathcal{R}(g)$ on [a, b] and if $c \in (a, b)$, then $f \in \mathcal{R}(g)$ on [a, c].

Remark 1.19. Similarly, the assumptions of Lemma 1.18 also imply $f \in \mathcal{R}(g)$ on [c, b]. Also, we make the definition

$$\int_{b}^{a} f dg = -\int_{a}^{b} f dg \quad \text{if} \quad a < b.$$

Theorem 1.20. If $f \in \mathcal{R}(g)$ on [a, b] and if $c \in (a, b)$, then

$$\int_{a}^{c} f dg + \int_{c}^{b} f dg = \int_{a}^{b} f dg.$$

Theorem 1.21. If $f \in \mathcal{R}(g)$, then $g \in \mathcal{R}(f)$, and

$$\int_{a}^{b} f dg + \int_{a}^{b} g df = f(b)g(b) - f(a)g(a).$$

Example 1.22. $\int_{-1}^{2} x d|x| = 5/2.$

Theorem 1.23 (Main Existence Theorem). If $f \in C[a, b]$ and $g \in BV[a, b]$, then $f \in \mathcal{R}(g)$.

1.4. Nondecreasing Integrators

Throughout this section we let $f \in B[a, b]$ and α be a nondecreasing function on [a, b]. **Definition 1.24.** If $P \in \mathcal{P}$, then we define the *lower and upper sums* L and U by

$$L(P, f, \alpha) = \sum_{k=1}^{n} m_k \left[\alpha(x_k) - \alpha(x_{k-1}) \right], \quad m_k = \min_{x_{k-1} \le x \le x_k} f(x)$$

and

$$U(P, f, \alpha) = \sum_{k=1}^{n} M_k \left[\alpha(x_k) - \alpha(x_{k-1}) \right], \quad M_k = \max_{x_{k-1} \le x \le x_k} f(x).$$

We also define the lower and upper Riemann-Stieltjes integrals by

$$\int_{\underline{a}}^{\underline{b}} f d\alpha = \sup_{P \in \mathcal{P}} L(P, f, \alpha) \quad \text{and} \quad \overline{\int_{a}^{\underline{b}}} f d\alpha = \inf_{P \in \mathcal{P}} U(P, f, \alpha)$$

Lemma 1.25. $\underline{\int_{a}^{b}} f d\alpha, \overline{\int_{a}^{b}} f d\alpha \in \mathbb{R}.$

Theorem 1.26. If $P, P^* \in \mathcal{P}$ with $P^* \supset P$, then

$$L(P,f,\alpha) \leq L(P^*,f,\alpha) \quad and \quad U(P,f,\alpha) \geq U(P^*,f,\alpha) \leq U(P^*,f,\alpha) < U(P^*,f,\alpha) \leq U(P^*,f,\alpha) < U$$

Theorem 1.27. $\underline{\int_a^b} f d\alpha \leq \overline{\int_a^b} f d\alpha$.

Theorem 1.28. If $f \in C[a, b]$ and α is nondecreasing on [a, b], then $f \in \mathcal{R}(\alpha)$ on [a, b].

1. THE RIEMANN–STIELTJES INTEGRAL

4

CHAPTER 2

Sequences and Series of Functions

2.1. Uniform Convergence

Definition 2.1. Let $\{f_n\}_{n\in\mathbb{N}}$ be functions defined on $E \subset \mathbb{R}$. Suppose $\{f_n\}$ converges for all $x \in E$. Then f defined by

$$f(x) = \lim_{n \to \infty} f_n(x) \quad \text{for} \quad x \in E$$

is called the *limit function* of $\{f_n\}$. We also say that $f_n \to f$ pointwise on E. If $f_n = \sum_{k=1}^n g_k$ for functions $g_k, k \in \mathbb{N}$, then f is also called the *sum* of the series $\sum_{k=1}^n g_k$, write $\sum_{k=1}^\infty g_k$.

Example 2.2. (i)
$$f_n(x) = 4x + x^2/n, x \in \mathbb{R}$$
.
(ii) $f_n(x) = x^n, x \in [0, 1]$.
(iii) $f_n(x) = \lim_{m \to \infty} [\cos(n!\pi x)]^{2m}, x \in \mathbb{R}$.
(iv) $f_n(x) = \frac{\sin(nx)}{n}, x \in \mathbb{R}$.
(v) $f_n(x) = \begin{cases} 2n^2x \text{ if } 0 \le x \le \frac{1}{2n} \\ 2n(1-nx) \text{ if } \frac{1}{2n} \le x \le \frac{1}{n} \\ 0 \text{ if } \frac{1}{n} \le x \le 1. \end{cases}$

Definition 2.3. We say that $\{f_n\}_{n \in \mathbb{N}}$ converges *uniformly* on E to a function f if

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \; \forall x \in E : \; |f_n(x) - f(x)| \le \varepsilon$$

If $f_n = \sum_{k=1}^n g_k$, we also say that the series $\sum_{k=1}^\infty g_k$ converges uniformly provided $\{f_n\}$ converges uniformly.

Example 2.4. (i) $f_n(x) = x^n, x \in [0, 1/2].$ (ii) $f_n(x) = x^n, x \in [0, 1].$

Theorem 2.5 (Cauchy Criterion). The sequence $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly on E iff

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall m, n \ge N \; \forall x \in E : \; |f_n(x) - f_m(x)| \le \varepsilon.$$

Theorem 2.6 (Weierstraß *M*-Test). Suppose $\{g_k\}_{k \in \mathbb{N}}$ satisfies

$$|g_k(x)| \le M_k \ \forall x \in E \ \forall k \in \mathbb{N}$$
 and $\sum_{k=1}^{\infty} M_k$ converges.

Then $\sum_{k=1}^{\infty} g_k$ converges uniformly.

2.2. Properties of the Limit Function

Theorem 2.7. Suppose $f_n \to f$ uniformly on E. Let x be a limit point of E and suppose $A_n = \lim_{t \to x} f_n(t)$ exists for all $n \in \mathbb{N}$.

Then $\{A_n\}_{n\in\mathbb{N}}$ converges and

$$\lim_{n \to \infty} A_n = \lim_{t \to x} f(t).$$

Theorem 2.8. If f_n are continuous on E for all $n \in \mathbb{N}$ and $f_n \to f$ uniformly on E, then f is continuous on E.

Corollary 2.9. If g_k are continuous on E for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} g_k$ converges uniformly on E, then $\sum_{k=1}^{\infty} g_k$ is continuous on E.

Definition 2.10. Let X be a metric space. By C(X) we denote the space of all complexvalued, continuous, and bounded functions on X. The *supnorm* of $f \in C(X)$ is defined by

$$\|f\|_{\infty} = \sup_{x \in X} |f(x)| \quad \text{ for } \quad f \in \mathcal{C}(X).$$

Theorem 2.11. (C(X), $d(f,g) = ||f - g||_{\infty}$) is a complete metric space.

Theorem 2.12. Let α be nondecreasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ for all $n \in \mathbb{N}$ and $f_n \to f$ uniformly on [a,b]. Then $f \in \mathcal{R}(\alpha)$ on [a,b] and

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) d\alpha.$$

Corollary 2.13. Let α be nondecreasing on [a, b]. Suppose $g_k \in \mathcal{R}(\alpha)$ on [a, b] for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} g_k$ converges uniformly on [a, b]. Then

$$\int_{a}^{b} \sum_{k=1}^{\infty} g_k d\alpha = \sum_{k=1}^{\infty} \int_{a}^{b} g_k d\alpha.$$

Theorem 2.14. Let f_n be differentiable functions on [a, b] for all $n \in \mathbb{N}$ such that $\{f_n(x_0)\}_{n\in\mathbb{N}}$ converges for some $x_0 \in [a, b]$. If $\{f'_n\}_{n\in\mathbb{N}}$ converges uniformly on [a, b], then $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly on [a, b], say to f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad \text{for all} \quad x \in [a, b].$$

Corollary 2.15. Suppose g_k are differentiable on [a, b] for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} g'_k$ is uniformly convergent on [a, b]. If $\sum_{k=1}^{\infty} g_k(x_0)$ converges for some point $x_0 \in [a, b]$, then $\sum_{k=1}^{\infty} g_k$ is uniformly convergent on [a, b], and

$$\left(\sum_{k=1}^{\infty} g_k\right)' = \sum_{k=1}^{\infty} g_k'.$$

2.3. Equicontinuous Families of Functions

Example 2.16. $f_n(x) = \frac{x^2}{x^2 + (1-nx)^2}, \ 0 \le x \le 1, \ n \in \mathbb{N}.$

Definition 2.17. A family \mathcal{F} of functions defined on E is said to be *equicontinuous* on E if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; (\forall x, y \in E : \; |x - y| < \delta) \; \forall f \in \mathcal{F} : \; |f(x) - f(y)| < \varepsilon.$$

Theorem 2.18. Suppose K is compact, $f_n \in C(K)$ for all $n \in \mathbb{N}$, and $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on K. Then the family $\mathcal{F} = \{f_n : n \in \mathbb{N}\}$ is equicontinuous.

Definition 2.19. The sequence $\{f_n\}_{n\in\mathbb{N}}$ is called *pointwise bounded* if there exists a function ϕ such that $|f_n(x)| < \phi(x)$ for all $n \in \mathbb{N}$. It is called *uniformly bounded* if there exists a number M such that $||f_n||_{\infty} \leq M$ for all $n \in \mathbb{N}$.

Theorem 2.20. A pointwise bounded sequence $\{f_n\}_{n\in\mathbb{N}}$ on a countable set E has a subsequence $\{f_{n_k}\}_{k\in\mathbb{N}}$ such that $\{f_{n_k}(x)\}_{k\in\mathbb{N}}$ converges for all $x \in E$.

Theorem 2.21 (Arzelà–Ascoli). Suppose K is compact and $\{f_n\}_{n \in \mathbb{N}} \subset C(K)$ is pointwise bounded and equicontinuous. Then $\{f_n\}$ is uniformly bounded on K and contains a subsequence which is uniformly convergent on K.

2.4. Weierstraß' Approximation Theorem

Theorem 2.22 (Weierstraß' Approximation Theorem). Let $f \in C[a, b]$. Then there exists a sequence of polynomials $\{P_n\}_{n \in \mathbb{N}}$ with

 $P_n \to f$ uniformly on [a, b].

2. SEQUENCES AND SERIES OF FUNCTIONS

CHAPTER 3

Some Special Functions

3.1. Power Series

Definition 3.1. A function f is said to be represented by a *power series* around a provided

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 for some $c_n, n \in \mathbb{N}_0$.

Such an f is called *analytic*.

Theorem 3.2. If

$$\sum_{n=0}^{\infty} c_n x^n \quad \text{ converges for } \quad |x| < R,$$

then it converges uniformly on $[-R + \varepsilon, R - \varepsilon]$ for all $\varepsilon > 0$. Also, f defined by

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \quad for \quad |x| < R$$

is continuous and differentiable on (-R, R) with

$$f'(x) = \sum_{n=0}^{\infty} (n+1)c_{n+1}x^n \quad for \quad |x| < R.$$

Corollary 3.3. Under the hypotheses of Theorem 3.2, $f^{(n)}$ exists for all $n \in \mathbb{N}$ and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\dots(n-k+1)c_n x^{n-k}$$

holds on (-R, R). In particular,

$$f^{(n)}(0) = n!c_n$$
 for all $n \in \mathbb{N}_0$.

Theorem 3.4 (Abel's Theorem). Suppose $\sum_{n=0}^{\infty} c_n$ converges. Put

$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 for $x \in (-1, 1)$.

Then

$$\lim_{x \to 1^-} f(x) = \sum_{n=0}^{\infty} c_n.$$

Theorem 3.5. Suppose $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$ converge to A, B, and C, where $c_n = \sum_{k=0}^n a_k b_{n-k}$. Then C = AB.

Theorem 3.6. Given a double sequence $\{a_{ij}\}_{i,j\in\mathbb{N}}$. If

$$\sum_{j=1}^{\infty} |a_{ij}| = b_i \text{ for all } i \in \mathbb{N} \quad and \quad \sum_{i=1}^{\infty} b_i \text{ converges},$$

then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$$

Theorem 3.7 (Taylor's Theorem). Suppose $\sum_{n=0}^{\infty} c_n x^n$ converges in (-R, R) and put $f(x) = \sum_{n=0}^{\infty} c_n x^n$. Then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad for \quad |x-a| < R - |a|.$$

3.2. Exponential, Logarithmic, and Trigonometric Functions

Definition 3.8. We define the *exponential function* by

$$E(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 for all $z \in \mathbb{C}$

Remark 3.9. In this remark, some properties of the exponential function are discussed.

Definition 3.10. We define the trigonometric functions by

$$C(x) = \frac{E(ix) + E(-ix)}{2}$$
 and $S(x) = \frac{E(ix) - E(-ix)}{2i}$.

Remark 3.11. In this remark, some properties of trigonometric functions are discussed.

3.3. Fourier Series

Definition 3.12. A trigonometric polynomial is a sum

$$f(x) = a_0 + \sum_{n=1}^{N} \left(a_n \cos(nx) + b_n \sin(nx) \right), \quad \text{where} \quad a_k, b_k \in \mathbb{C}.$$

A trigonometric series is a series

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$

Remark 3.13. In this remark, some properties of trigonometric series are discussed. **Definition 3.14.** A sequence $\{\phi_n\}_{n \in \mathbb{N}}$ is called an *orthogonal* system of functions on [a, b] if

$$\langle \phi_n, \phi_m \rangle := \int_a^b \phi_n(x) \overline{\phi_m(x)} dx = 0 \quad \text{for all} \quad m \neq n.$$

If, in addition

$$\|\phi_n\|_2^2 := \langle \phi_n, \phi_n \rangle = 1 \quad \text{for all} \quad n \in \mathbb{N},$$

then $\{\phi_n\}$ is called *orthonormal* on [a, b]. If $\{\phi_n\}$ is *orthonormal* on [a, b], then

 $c_n = \langle f, \phi_n \rangle$ for all $n \in \mathbb{N}$

10

are called the *Fourier coefficients* of a function f relative to $\{\phi_n\}$, and

$$f(x) \sim \sum_{n=1}^{\infty} c_n \phi_n(x)$$

is called the *Fourier series* of f.

Theorem 3.15. Let $\{\phi_n\}$ be orthonormal on [a, b]. Let

$$s_n(f;x) := s_n(x) := \sum_{m=1}^n c_m \phi_m(x), \quad where \quad f(x) \sim \sum_{m=1}^\infty c_m \phi_m(x),$$

and put

$$t_n(x) = \sum_{m=1}^n \gamma_m \phi_m(x) \quad with \quad \gamma_m \in \mathbb{C}.$$

Then

$$||f - s_n||_2^2 \le ||f - t_n||_2^2$$

with equality if $\gamma_m = c_m$ for all $m \in \mathbb{N}$.

Theorem 3.16 (Bessel's Inequality). If $\{\phi_n\}$ is orthonormal on [a, b] and if $f(x) \sim \sum_{n=1}^{\infty} c_n \phi_n(x)$, then

$$\sum_{n=1}^{\infty} |c_n|^2 \le ||f||_2^2.$$

In particular, $\lim_{n\to\infty} c_n = 0$.

Definition 3.17. The *Dirichlet kernel* is defined by

$$D_N(x) = \sum_{n=-N}^{N} e^{inx}$$
 for all $x \in \mathbb{R}$.

Remark 3.18. In this remark, some properties of the Dirichlet kernel are discussed.

Theorem 3.19 (Localization Theorem). If, for some $x \in \mathbb{R}$, there exist $\delta > 0$ and $M < \infty$ with

$$|f(x+t) - f(x)| \le M|t|$$
 for all $t \in (-\delta, \delta)$,

then

$$\lim_{N \to \infty} s_N(f; x) = f(x).$$

Corollary 3.20. If f(x) = 0 for all x in some interval J, then $s_N(f;x) \to 0$ as $N \to \infty$ for all $x \in J$.

Theorem 3.21 (Parseval's Formula). If f and g have period 2π and are Riemann integrable,

$$f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}$$
 and $g(x) \sim \sum_{n=-\infty}^{\infty} \gamma_n e^{inx}$,

then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\overline{g(x)}dx = \sum_{n=-\infty}^{\infty} c_n \overline{\gamma_n}, \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$$
$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(x) - s_N(f;x)|^2 dx = 0.$$

and

3. SOME SPECIAL FUNCTIONS

3.4. The Gamma Function

Definition 3.22. For $x \in (0, \infty)$, we define the *Gamma function* as

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Theorem 3.23. The Gamma function satisfies the following.

- (i) $\Gamma(x+1) = x\Gamma(x)$ for all $x \in (0,\infty)$;
- (ii) $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$;

(iii) $\log \Gamma$ is convex on $(0, \infty)$.

Theorem 3.24. If f is a positive function on $(0, \infty)$ such that f(x + 1) = xf(x) for all $x \in (0, \infty)$, f(1) = 1, log f is convex, then $f(x) = \Gamma(x)$ for all $x \in (0, \infty)$.

Theorem 3.25. We have

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1) \cdot \ldots \cdot (x+n)}$$

Definition 3.26. For x > 0 and y > 0, we define the *Beta function* by

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

Theorem 3.27. If x > 0 and y > 0, then

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Example 3.28. $\Gamma(1/2) = \sqrt{\pi}$ and $\int_{-\infty}^{\infty} e^{-s^2} ds = \sqrt{\pi}$.

Theorem 3.29 (Stirling's Formula). We have

$$\lim_{x \to \infty} \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x}} = 1.$$

CHAPTER 4

The Lebesgue Integral

4.1. The Lebesgue Measure

Example 4.1. In this example, the method of the Lebesgue integral is discussed.

Definition 4.2. Let $a = \begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix}, b = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix} \in \mathbb{R}^N$. We write $a \le b$ if $a_i \le b_i$ for all

 $1 \leq i \leq N$. The set $[a,b] = \{x \in \mathbb{R}^N : a \leq x \leq b\}$ is called a closed *interval*. The volume of I = [a, b] is defined by

$$|I| = \prod_{i=1}^{N} (b_i - a_i).$$

Similarly we define intervals (a, b], [a, b), and (a, b), and their volumes are defined to be |[a, b]|, too.

Lemma 4.3. If I, I_k , J_k denote intervals in \mathbb{R}^N , then

 $\begin{array}{lll} \text{(i)} & I \subset J \implies |I| \leq |J|;\\ \text{(ii)} & I = \biguplus_{j=1}^{n} I_{j} \implies |I| = \sum_{j=1}^{n} |I_{j}|;\\ \text{(iii)} & I \subset \bigcup_{j=1}^{n} J_{j} \implies |I| \leq \sum_{j=1}^{n} |J_{j}|. \end{array}$

Definition 4.4. We define the *outer measure* of any set $A \subset \mathbb{R}^N$ by

$$\mu^*(A) = \inf\left\{\sum_{j=1}^{\infty} |I_j|: A \subset \bigcup_{j=1}^{\infty} I_j \text{ and } I_j \text{ are closed intervals for all } j \in \mathbb{N}\right\}.$$

Example 4.5. For $A = \{a\}$ we have $\mu^*(A) = 0$.

Lemma 4.6. The outer measure μ^* is

- (i) monotone: $A \subset B \implies \mu^*(A) \le \mu^*(B);$ (ii) subadditive: $\mu^*(\bigcup_{k=1}^{\infty} A_k) \le \sum_{k=1}^{\infty} \mu^*(A_k).$

Example 4.7. Each countable set C has $\mu^*(C) = 0$.

Lemma 4.8. If I is an interval, then $\mu^*(I) = |I|$.

Lemma 4.9. (i) If d(A, B) > 0, then $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$; (ii) if $A_k \subset I_k$ and $\{I_k^o\}_{k \in \mathbb{N}}$ are pairwise disjoint, then $\mu^*(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu^*(A_k)$.

Theorem 4.10. We have

$$\forall A \subset \mathbb{R}^N \ \forall \varepsilon > 0 \ \exists O \supset A : \ O \ open \ and \ \mu^*(O) < \mu^*(A) + \varepsilon.$$

4. THE LEBESGUE INTEGRAL

Definition 4.11. A set $A \subset \mathbb{R}^N$ is called *Lebesgue measurable* (or L-measurable) if

 $\forall \varepsilon > 0 \; \exists O \supset A : \; O \text{ open and } \mu^*(O \setminus A) \leq \varepsilon.$

If A is L-measurable, then $\mu(A) = \mu^*(A)$ is called its *L-measure*.

Theorem 4.12. The countable union of L-measurable sets is L-measurable.

Theorem 4.13 (Examples of L-measurable Sets). Open, compact, closed, and sets with outer measure zero are L-measurable.

Theorem 4.14. If A is L-measurable, then $B = A^{c}$ can be written as

$$B = N \uplus \bigcup_{k=1}^{\infty} F_k,$$

where $\mu^*(N) = 0$ and F_k are closed for all $k \in \mathbb{N}$.

Definition 4.15. For a set A we define the *power set* $\mathcal{P}(A)$ by $\mathcal{P}(A) = \{B : B \subset A\}$.

Definition 4.16. $\mathcal{A} \subset \mathcal{P}(X)$ is called a σ -algebra in X provided

- (i) $X \in \mathcal{A};$
- (ii) $A \in \mathcal{A} \implies A^{c} \in \mathcal{A};$
- (iii) $A_k \in \mathcal{A} \ \forall k \in \mathbb{N} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}.$

Theorem 4.17. The collection of all L-measurable subsets of \mathbb{R}^N is a σ -algebra.

Theorem 4.18. $A \subset \mathbb{R}^N$ is L-measurable iff for all $\varepsilon > 0$ there is a closed set $F \subset A$ with $\mu^*(A \setminus F) < \varepsilon$.

Definition 4.19. A triple (X, \mathcal{A}, μ) is called a *measure space* if

- (i) $X \neq \emptyset$;
- (ii) \mathcal{A} is a σ -algebra on X;
- (iii) μ is a nonnegative and σ -additive function on \mathcal{A} with $\mu(\emptyset) = 0$.

The space is called *complete* if each subset $B \subset A$ with $\mu(A) = 0$ satisfies $\mu(B) = 0$.

Theorem 4.20. $(\mathbb{R}^N, \mathcal{A}, \mu)$ is a complete measure space, where \mathcal{A} is the set of all *L*-measurable sets, and μ is the *L*-measure.

4.2. Measurable Functions

Throughout this section, (X, \mathcal{A}, μ) is a measure space.

Definition 4.21. A function $f: X \to \overline{\mathbb{R}}$ is called *measurable* if for each $a \in \mathbb{R}$,

$$X(f \le a) := \{x \in X : f(x) \le a\}$$

is measurable (i.e., is an element of \mathcal{A}).

- Example 4.22 (Examples of Measurable Functions). (i) Constant functions are measurable.
 - (ii) Characteristic functions K_E are measurable iff E is measurable.
 - (iii) If $X = \mathbb{R}$ and $\mu = \mu_L$, then continuous and monotone functions are measurable.

Theorem 4.23. If f and g are measurable, then

$$X(f < g), \quad X(f \le g), \quad and \quad X(f = g)$$

are measurable.

Theorem 4.24. If $c \in \mathbb{R}$, f and g are measurable, then

$$cf, f+g, fg, |f|, f^+ = \sup(f,0), and f^- = \sup(-f,0)$$

we measurable

are measurable.

Theorem 4.25. If $f_n : X \to \overline{\mathbb{R}}$ are measurable for all $n \in \mathbb{N}$, then

$$\sup_{n \in \mathbb{N}} f_n, \quad \inf_{n \in \mathbb{N}} f_n, \quad \limsup_{n \to \infty} f_n, \quad and \quad \liminf_{n \to \infty} f_n$$

are measurable.

Definition 4.26. We say that two functions $f, g: X \to \overline{\mathbb{R}}$ are equal almost everywhere and write $f \sim g$, if there exists $N \in \mathcal{A}$ with

$$\mu(N) = 0$$
 and $\{x : f(x) \neq g(x)\} \subset N.$

Theorem 4.27. If $f, g: X \to \overline{\mathbb{R}}$, f is measurable, and $f \sim g$, then g is measurable, too, provided the measure space is complete.

4.3. Summable Functions

Definition 4.28. A measurable function $f: X \to [0, \infty]$ is called *summable*.

Notation 4.29. For a summable function f, we introduce the following notation:

$$A_0(f) = \{x \in X : f(x) = 0\}, \quad A_\infty(f) = \{x \in X : f(x) = \infty\},\$$
$$A_{nk}(f) = \left\{x \in X : \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n}\right\},\$$
$$s_n(f) = \sum_{k=1}^{\infty} \frac{k-1}{2^n} \mu\left(A_{nk}(f)\right) + \infty \mu\left(A_\infty(f)\right).$$

Theorem 4.30. Let f and g be summable. Then for all $n \in \mathbb{N}$,

(i)
$$s_n(f) \leq s_{n+1}(f);$$

(ii) $f \leq g \implies s_n(f) \leq s_n(g);$
(iii) $f \sim g \implies s_n(f) = s_n(g).$

Definition 4.31. If f is summable, then we define

$$\int_X f d\mu = \lim_{n \to \infty} s_n(f).$$

If B is measurable, then we define

$$\int_B f d\mu = \int_X f K_B d\mu.$$

Theorem 4.32. If f and g are summable with $f \leq g$, then

$$\int_X f d\mu \le \int_X g d\mu.$$

Theorem 4.33. If f and g are summable with $f \sim g$, then

$$\int_X f d\mu = \int_X g d\mu.$$

Example 4.34. Let $c \ge 0$ and A be measurable. Then

$$\int_A c d\mu = c\mu(A).$$

Theorem 4.35. If f is summable, then

$$f \sim 0 \iff \int_X f d\mu = 0.$$

Theorem 4.36. Let (X, \mathcal{A}, μ) be a measure space and f be summable on X. Define

$$\nu(A) = \int_A f d\mu.$$

Then (X, \mathcal{A}, ν) is a measure space.

Theorem 4.37. If f is summable and $c \ge 0$, then

$$\int_X (cf)d\mu = c\int_X fd\mu$$

Theorem 4.38 (Beppo Levi; Monotone Convergence Theorem). Let f and f_n be summable for all $n \in \mathbb{N}$ such that f_n is monotonically increasing to f, i.e., $f_n(x) \leq f_{n+1}(x)$ for all $n \in \mathbb{N}$ and $f_n(x) \to f(x), n \to \infty$, for all $x \in X$. Then

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

Theorem 4.39. If f and g are summable, then

$$\int_X (f+g)d\mu = \int_X fd\mu + \int_X gd\mu$$

Theorem 4.40 (Fatou Lemma). If f_n are summable for all $n \in \mathbb{N}$, then

$$\int_X \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

4.4. Integrable Functions

If $f: X \to \overline{\mathbb{R}}$ is measurable, then f^+ and f^- are measurable by Theorem 4.24 and hence summable. If $\int_X |f| d\mu < \infty$, then because of $f^+ \leq |f|, f^- \leq |f|$, and monotonicity, we have $\int_X f^+ d\mu < \infty$ and $\int_X f^- d\mu < \infty$.

Definition 4.41. A measurable function $f: X \to \overline{\mathbb{R}}$ is called *integrable* if $\int_X |f| d\mu < \infty$, we write $f \in L(X)$, and then we define

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

and

$$\int_{A} f d\mu = \int_{X} f K_A d\mu \quad \text{if } f K_A \text{ is integrable.}$$

Lemma 4.42. (i) If f is integrable, then $\mu(A_{\infty}(|f|)) = 0$;

- (ii) if f is integrable and $f \sim g$, then so is g (in a complete measure space);
- (iii) if f and g are integrable and $f \sim g$, then $\int_X f d\mu = \int_X g d\mu$; (iv) if $f: X \to \mathbb{R}$ is integrable and f = g h such that $g, h \ge 0$ are integrable, then $\int_X f d\mu = \int_X g d\mu \int_X h d\mu$.

Theorem 4.43. The integral is homogeneous and linear.

Theorem 4.44 (Lebesgue; Dominated Convergence Theorem). Suppose $f_n : X \to \mathbb{R}$ are integrable for all $n \in \mathbb{N}$. If $f_n \to f$, $n \to \infty$ (pointwise) and if there exists an integrable function $g : X \to [0, \infty]$ with

$$|f_n(x)| \le g(x)$$
 for all $x \in X$ and all $n \in \mathbb{N}$,

then

$$\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu.$$

Theorem 4.45. Let I be an arbitrary interval, suppose $f(x, \cdot)$ is Lebesgue integrable on I for each $x \in [a, b]$, and define the Lebesgue integral

$$F(x) := \int_{I} f(x, y) dy.$$

(i) If for each $y \in I$ the function $f(\cdot, y)$ is continuous on [a, b] and if there exists $g \in L(I)$ such that

$$|f(x,y)| \le g(y)$$
 for all $x \in [a,b]$ and all $y \in I$,

then F is continuous on [a, b].

(ii) If for each $y \in I$ the function $f(\cdot, y)$ is differentiable with respect to x and if there exists $g \in L(I)$ such that

$$\left| \frac{\partial f(x,y)}{\partial x} \right| \le g(y) \quad \text{for all} \quad x \in [a,b] \quad \text{and all} \quad y \in I,$$

then F is differentiable on [a, b], and we have the formula

$$F'(x) = \int_{I} \frac{\partial f(x,y)}{\partial x} dy.$$

Theorem 4.46. If $f : [a, b] \to \mathbb{R}$ is Riemann integrable, then it is also Lebesgue integrable, and the two integrals are the same.

Theorem 4.47 (Arzelà). If $f_n \in \mathbb{R}[a, b]$ converge pointwise to $f \in \mathbb{R}[a, b]$ and are uniformly bounded, *i.e.*,

$$|f_n(x)| \le M$$
 for all $x \in [a, b]$ and all $n \in \mathbb{N}$,

then the Riemann integral satisfies

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} dx = \int_{a}^{b} f dx.$$

4.5. The Spaces L^p

Definition 4.48. Let $p \ge 1$. Let I be an interval. We define the space $L^p(I)$ as the set of all measurable functions with the property $|f|^p \in L(I)$.

Theorem 4.49. $L^p(I)$ is a linear space.

Theorem 4.50 (Hölder). Suppose p, q > 1 satisfy 1/p + 1/q = 1. Let $f \in L^p(I)$ and $g \in L^q(I)$. Then $fg \in L^1(I)$ and

$$\left|\int_{I} fg dx\right| \leq \left(\int_{I} |f|^{p} dx\right)^{1/p} \left(\int_{I} |g|^{q} dx\right)^{1/q}.$$

Theorem 4.51 (Minkowski). For $f, g \in L^p(I)$ we have

$$\left(\int_{I} |f+g|^{p} dx\right)^{1/p} \leq \left(\int_{I} |f|^{p} dx\right)^{1/p} + \left(\int_{I} |g|^{p} dx\right)^{1/p}.$$

Definition 4.52. For each $f \in L^p(I)$ we define

$$||f||_p := \left(\int_I |f|^p dx\right)^{1/p}$$

Lemma 4.53. Suppose $g_k \in L^p(I)$ for all $k \in \mathbb{N}$ such that $\sum_{n=1}^{\infty} ||g_n||_p$ converges. Then $\sum_{n=1}^{\infty} g_n$ converges to a function $s \in L^p(I)$ in the L^p -sense.

Theorem 4.54. $L^p(I)$ is a Banach space.

Remark 4.55. In this remark, some connections to probability theory are discussed.

Definition 4.56. We say that a sequence of complex functions $\{\phi_n\}$ is an *orthonormal* set of functions on I

$$\int_{I} \phi_n \overline{\phi_m} dx = \begin{cases} 0 & \text{if } n \neq m \\ 1 & \text{if } n = m \end{cases}$$

If $f \in L^2(I)$ and if

$$c_n = \int_I f \overline{\phi_n} dx \quad \text{for} \quad n \in \mathbb{N},$$

then we write

$$f \sim \sum_{n=1}^{\infty} c_n \phi_n.$$

Theorem 4.57 (Riesz-Fischer). Let $\{\phi_n\}$ be orthonormal on I. Suppose $\sum_{n=1}^{\infty} |c_n|^2$ converges and put $s_n = \sum_{k=1}^n c_k \phi_k$. Then there exists a function $f \in L^2(I)$ such that $\{s_n\}$ converges to f in the L^2 -sense, and

$$f \sim \sum_{n=1}^{\infty} c_n \phi_n.$$

Definition 4.58. An orthonormal set $\{\phi_n\}$ is said to be *complete* if, for $f \in L^2(I)$, the equations

$$\int_{I} f \overline{\phi_n} dx = 0 \quad \text{for all} \quad n \in \mathbb{N}$$

imply that ||f|| = 0.

Theorem 4.59 (Parseval). Let $\{\phi_n\}$ be a complete orthonormal set. If $f \in L^2(I)$ and if

$$f \sim \sum_{n=1}^{\infty} c_n \phi_n,$$

then

$$\int_{I} |f|^2 dx = \sum_{n=1}^{\infty} |c_n|^2.$$

4.6. Signed Measures