- 60. For the following functions, calculate the integral between 0 and 1 once by the Riemann method and another time by the Lebesgue method (as illustrated in Example 4.1 in class):
 - (a) f(x) = x;

(b)
$$f(x) = \sqrt{x}$$
.

- 61. Show that each countable union can be written as a countable union of pairwise disjoint sets.
- 62. Prove that each open set in \mathbb{R}^N is the countable union of closed intervals which have pairwise disjoint interiors.
- 63. Let {A_n} be a sequence of sets. The set of elements that are in almost all sets A_n is denoted by lim inf_{n→∞} A_n. The set of elements that are in inifinitely many A_n is denoted by lim sup_{n→∞} A_n. If these limits are the same, this set is denoted by lim_{n→∞} A_n. Show:
 - (a) $\liminf_{n\to\infty} A_n \subset \limsup_{n\to\infty} A_n$;
 - (b) $\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k;$
 - (c) $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k;$
 - (d) $(\limsup_{n\to\infty} A_n)^C = \liminf_{n\to\infty} A_n^C$;
 - (e) $(\liminf_{n\to\infty} A_n)^C = \limsup_{n\to\infty} A_n^C$;
 - (f) $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$ if $A_k \subset A_{k+1}$ for all $k \in \mathbb{N}$;
 - (g) $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$ if $A_k \supset A_{k+1}$ for all $k \in \mathbb{N}$.
- 64. Calculate the limits from the previous problem if $A_{2n} = [0, 1/2]$ and $A_{2n-1} = [0, 1]$ for $n \in \mathbb{N}$.
- 65. For nonempty sets A and B the expression $\operatorname{card} A = \operatorname{card} B$ (<) means that there is a function $f : A \to B$ which is bijective (injective but not bijective). Show that $\operatorname{card} \mathcal{P}(X) > \operatorname{card} X$ for each set $X \neq \emptyset$.