Problems \#7, Math 315, Dr. M. Bohner.Mar 4, 2005. Due Mar 11, 2 pm.
60. For the following functions, calculate the integral between 0 and 1 once by the Riemann method and another time by the Lebesgue method (as illustrated in Example 4.1 in class):
(a) $f(x)=x$;
(b) $f(x)=\sqrt{x}$.
61. Show that each countable union can be written as a countable union of pairwise disjoint sets.
62. Prove that each open set in \mathbb{R}^{N} is the countable union of closed intervals which have pairwise disjoint interiors.
63. Let $\left\{A_{n}\right\}$ be a sequence of sets. The set of elements that are in almost all sets A_{n} is denoted by $\liminf _{n \rightarrow \infty} A_{n}$. The set of elements that are in inifinitely many A_{n} is denoted by $\lim \sup _{n \rightarrow \infty} A_{n}$. If these limits are the same, this set is denoted by $\lim _{n \rightarrow \infty} A_{n}$. Show:
(a) $\liminf _{n \rightarrow \infty} A_{n} \subset \limsup _{n \rightarrow \infty} A_{n}$;
(b) $\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}$;
(c) $\lim \sup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$;
(d) $\left(\limsup \operatorname{sum}_{n \rightarrow \infty} A_{n}\right)^{C}=\liminf _{n \rightarrow \infty} A_{n}^{C}$;
(e) $\left(\liminf _{n \rightarrow \infty} A_{n}\right)^{C}=\limsup \sup _{n \rightarrow \infty} A_{n}^{C}$;
(f) $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} A_{n}$ if $A_{k} \subset A_{k+1}$ for all $k \in \mathbb{N}$;
(g) $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}$ if $A_{k} \supset A_{k+1}$ for all $k \in \mathbb{N}$.
64. Calculate the limits from the previous problem if $A_{2 n}=[0,1 / 2]$ and $A_{2 n-1}=[0,1]$ for $n \in \mathbb{N}$.
65. For nonempty sets A and B the expression $\operatorname{card} A=\operatorname{card} B(<)$ means that there is a function $f: A \rightarrow B$ which is bijective (injective but not bijective). Show that $\operatorname{card} \mathcal{P}(X)>\operatorname{card} X$ for each set $X \neq \emptyset$.

