1. Find the solution (for positive time t) of

$$
4 x u_{x}+2 t u_{t}=x t, \quad u(x, 1)=\phi(x)
$$

2. Transform the equation

$$
u_{x x}+2 u_{x t}+u_{t t}=2 u
$$

into standard form. Solve the obtained standard PDE. Then use your transformation to obtain the solution of the original PDE.
3. Suppose ϕ and ψ are even functions and u is the solution (with $c>0$) of

$$
u_{t t}=c^{2} u_{x x}, \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
$$

Show that u is an even function in x for all times t.
4. Suppose u solves the equation (with a given function h and $c>0$)

$$
u_{t t}+2 c u_{x t}+c^{2} u_{x x}=h(x-c t) .
$$

Introduce $v=u_{t}+c u_{x}$ and calculate $v_{t}+c v_{x}$ to obtain a PDE of first order for v. Solve this PDE using the geometric method. Thus obtain a PDE of first order for u. Solve this PDE using the geometric method. Finally, present the solution of the initial value problem

$$
u_{t t}+2 c u_{x t}+c^{2} u_{x x}=h(x-c t), \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
$$

