1. Find the solution of the problem

\[u_t - ku_{xx} + btu = 0, \quad u(x, 0) = \phi(x), \]

where \(b, k > 0 \). (Hint: Problems 37 and 38.)

2. Prove that the total energy for the wave equation

\[E(t) = \frac{1}{2} \int_0^d \left\{ \frac{1}{c^2} u_x^2(x,t) + u_x^2(x,t) \right\} dx \]

is conserved when having Neumann boundary conditions.

3. Find the Fourier series of

\[f(x) = \begin{cases}
-3 & \text{if } -\pi \leq x < 0 \\
0 & \text{if } x = 0 \\
1 & \text{if } 0 < x \leq \pi.
\end{cases} \]

Does the Fourier series of \(f \) converge pointwise to \(f \) in \((-\pi, \pi)\)?

4. Let \(c > 0 \) and \(N \in \mathbb{N} \). Consider the discrete problem

\[\Delta_m u(n+1, m) = k\Delta_{nn} u(n, m), \quad u(0, m) = u(N, m) = 0 \]

(with \(\Delta_m u(n, m) = u(n, m+1) - u(n, m) \), \(\Delta_n u(n, m) = u(n+1, m) - u(n, m) \) etc.) and find solutions by separating the variables \(n \in \{0, 1, \ldots, N\} \) and \(m \in \mathbb{N}_0 \). (Hint: Problem 46.)