Set	MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY	Founded 1870 Rolla, Missouri
	Section 1.2	
	Solutions and Initial Value Problems	

Solutions of Ordinary Differential Equations

A function y(t) is an explicit solution of an $n^{\rm th}$ -order ODE if there exists an interval such that

- 1) y(t) has n derivatives for all t in the interval and
- 2) y(t) satisfies the ODE for all t in the interval.

	Example 1	
Verify that	$ty' - y = t^2$	
has an explicit solution	$ty - y - t$ $y(t) = 3t + t^2$	
	y(t) = 3t + t	

Example 2 Verify that $y(x) = \frac{1}{x}$ is an explicit solution of xy'+y=0**Implicit Solutions** A relation G(x, y) = 0 is said to be an implicit solution of an $n^{ m th}$ -order ODE if it defines one or more explicit solutions of the ODE. Example 3 Show that show that $x^2+y^2=4$ defines an implicit solution of the differential equation $\frac{dy}{dx}=-\frac{x}{y}$

Initial Value Problems

An initial value problem combines an $n^{\rm th}\text{-}{\rm order}$ ODE with the n initial conditions

$$y(t_0) = y_0 \\ y'(t_0) = y_1 \\ y''(t_0) = y_2 \\ \vdots \\ y^{(n-1)}(t_0) = y_{n-1}$$

A solution to the IVP must satisfy the ODE along with all \boldsymbol{n} initial conditions.

Example 4

Verify that $y=(x-2)^3$ is a solution of the initial value problem $\frac{dy}{dx}=3y^{2/3}\ ,\ y(2)=0$