Advanced Calculus I (Math 4209)

Spring 2018 Lecture Notes

Martin Bohner

Version from May 4, 2018

Author address:

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, Missouri 65409-0020

 $E\text{-}mail \ address: \ \texttt{bohner@mst.edu}$

URL: http://web.mst.edu/~bohner

Contents

Chapter 1. Preliminaries	1
1.1. Sets	1
1.2. Functions	2
1.3. Proofs	3
Chapter 2. The Real Number System	5
2.1. The Field Axioms	5
2.2. The Positivity Axioms	6
2.3. The Completeness Axiom	7
2.4. The Natural Numbers	8
2.5. Some Inequalities and Identities	9
Chapter 3. Sequences of Real Numbers	13
3.1. The Convergence of Sequences	13
3.2. Monotone Sequences	14
Chapter 4. Continuous Functions	17
Chapter 5. Differentiation	21
5.1. Differentiation Rules	21
5.2. The Mean Value Theorems	22
5.3. Applications of the Mean Value Theorems	23
Chapter 6. Integration	27
6.1. The Definition of the Integral	27
6.2. The Fundamental Theorem of Calculus	28

CONTENTS
CONTRACTO

6.3.	Applications	29
6.4.	Improper Integrals	29
Chapter	7. Infinite Series of Functions	31
7.1.	Uniform Convergence	31
7.2.	Interchanging of Limit Processes	32

Preliminaries

1.1. Sets

Definition 1.1 (Cantor). A *set* is a collection of certain distinct objects which are called *elements* of the set.

Notation 1.2. The following notation will be used throughout this class:

- $x \in A$ (or $x \notin A$): x is an element (or is not an element) of the set A;
- $A \subset B$: A is a subset of B, i.e., if $x \in A$, then $x \in B$ (or: $x \in A \implies x \in B$);
- $A = B \iff A \subset B$ and $B \subset A$;
- \emptyset : empty set. We have $\emptyset \subset A$ for all sets A;
- $A = \{a, b, c\}$: A consists of the elements a, b, and c;
- $A = \{x : x \text{ has the property } P\}$: A consists of all elements x that have the property P;
- $A \cup B := \{x : x \in A \text{ or } x \in B\}$: union of A and B;
- $A \cap B := \{x : x \in A \text{ and } x \in B\}$: intersection of A and B;
- $A \setminus B := \{x : x \in A \text{ and } x \notin B\}$: difference of A and B;
- $A \times B := \{(a, b) : a \in A \text{ and } b \in B\}$: Cartesian product of A and B (with $(a, b) = (c, d) \iff a = c \text{ and } b = d$);
- $A^{c} := \{x : x \notin A\}$: complement of A (with respect to a given set X);
- $\mathcal{P}(A) := \{B : B \subset A\}$: power set of A.

Notation 1.3 (Quantifiers). We use the following quantifiers throughout this class:

- universal quantifier: \forall "for all";
- existential quantifier: \exists "there exists".
- unique existential quantifier: $\exists!$ "there exists exactly one".

Lemma 1.4. The operations \cup and \cap satisfy the commutative, associative, and distributive laws.

1. PRELIMINARIES

1.2. Functions

Definition 1.5. Let X and Y be nonempty sets. A *function* (or mapping) f from X to Y is a correspondence that associates with each point $x \in X$ in a unique way a $y \in Y$; we write y = f(x). X is called the *domain* of f while Y is called the *range* of f. We write $f: X \to Y$.

Remark 1.6. Two functions $f : X \to Y$ and $g : U \to V$ are called equal (we write f = g) iff X = U and Y = V and f(x) = g(x) for all $x \in X$.

Notation 1.7. Let $f: X \to Y$ be a function. Then we call

- (i) $G(f) := \{(x, f(x)) : x \in X\} \subset X \times Y$ the graph of f;
- (ii) $f(A) := \{f(x) : x \in A\} \subset Y$ the *image* of a set $A \subset X$;
- (iii) $f^{-1}(B) := \{x \in X : f(x) \in B\} \subset X$ the inverse image of a set $B \subset Y$.

Lemma 1.8. Let $f: X \to Y$ be a function and $A \subset X$, $B \subset Y$. Then we have

- (i) $y \in f(A) \iff \exists x \in A : f(x) = y;$
- (ii) $x \in A \implies f(x) \in f(A);$
- (iii) $x \in f^{-1}(B) \iff f(x) \in B.$

Definition 1.9. Let $f: X \to Y$ be a function. Then f is called

- (i) one-to-one if $x_1, x_2 \in X$ with $x_1 \neq x_2$ always implies $f(x_1) \neq f(x_2)$;
- (ii) onto if f(X) = Y;
- (iii) *invertible* if f is both one-to-one and onto.

Remark 1.10. (i) $f: X \to Y$ is a function iff $\forall x \in X \exists ! y \in Y : f(x) = y;$

- (ii) $f: X \to Y$ is onto iff $\forall y \in Y \ \exists x \in X : \ f(x) = y;$
- (iii) $f: X \to Y$ is invertible iff $\forall y \in Y \exists ! x \in X : f(x) = y$.

Definition 1.11. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the function $g \circ f: X \to Z$ with $(g \circ f)(x) = g(f(x))$ for all $x \in X$ is called the *composite* function of f and g.

Proposition 1.12. A function $f : X \to Y$ is invertible iff there exists exactly one function $g : Y \to X$ satisfying

$$(f \circ g)(y) = y \ \forall y \in Y \quad and \quad (g \circ f)(x) = x \ \forall x \in X.$$

1.3. PROOFS

Notation 1.13. Let $f: X \to Y$. The unique function $g: Y \to X$ from Proposition 1.12 is called the inverse function of f and denoted by f^{-1} .

1.3. Proofs

Remark 1.14 (Proof Techniques). Let P and Q be two statements.

- (i) To prove the *implication* P ⇒ Q, i.e., the theorem with assumption P and conclusion Q: We say "if P is true, then Q is true". Or "P is sufficient for Q". Or "Q is necessary for P". The implication P ⇒ Q is logically equivalent to the *contraposition* ¬Q ⇒ ¬P (negations).
 - (a) direct proof: assume P and show Q;
 - (b) *indirect proof*: do a direct proof with the contraposition;
 - (c) proof by contradiction: assume P and $\neg Q$ and derive a statement that contradicts a true statement.
- (ii) To prove the equivalence $P \iff Q$, show $P \implies Q$ and $Q \implies P$. Another possibility is to introduce "intermediate" statements P_1, P_2, \ldots, P_n and to prove $P \iff P_1 \iff P_2 \iff \ldots \iff P_n \iff Q$.

Table 1.15 (Truth Table).

Р	Т	Т	F	F
Q	Т	F	Т	F
$\neg P$	F	F	Т	Т
$\neg Q$	F	Т	F	Т
$P \wedge Q$	Т	F	F	F
$P \lor Q$	Т	Т	Т	F
$P \implies Q$	Т	F	Т	Т
$Q \implies P$	Т	Т	F	Т
$P \iff Q$	Т	F	F	Т

1. PRELIMINARIES

The Real Number System

2.1. The Field Axioms

Definition 2.1. Let K be a set with at least two elements, and let $+, \cdot : K \times K \to K$ be two functions that we call *addition* and *multiplication*. We say that K is a *field* provided the following *field axioms* are satisfied:

- (F₁) $a + b = b + a \forall a, b \in K$ (commutativity of +);
- (F₂) $(a+b) + c = a + (b+c) \forall a, b, c \in K$ (associativity of +);
- (F₃) $\exists 0 \in K : a + 0 = 0 + a = a \ \forall a \in K$ (additive identity);
- (F₄) $\forall a \in K \exists b \in K : a + b = 0$ (additive inverse);
- (F₅) $a \cdot b = b \cdot a \ \forall a, b \in K$ (commutativity of \cdot);
- (F₆) $(a \cdot b) \cdot c = a \cdot (b \cdot c) \forall a, b, c \in K$ (associativity of \cdot);
- (F₇) $\exists 1 \in K : a \cdot 1 = 1 \cdot a = a \ \forall a \in K$ (multiplicative identity);
- (F₈) $\forall a \in K \setminus \{0\} \exists b \in K : a \cdot b = 1$ (multiplicative inverse);
- (F₉) $(a+b) \cdot c = a \cdot c + b \cdot c \, \forall a, b, c \in K$ (distributive property).

Notation 2.2. $ab := a \cdot b$, $a^2 := a \cdot a$, a + b + c := (a + b) + c, abc := (ab)c, b from (F₄) is denoted as -a, b from (F₈) is denoted as a^{-1} , $a : b = \frac{a}{b} := ab^{-1}$ if $b \neq 0$, a - b := a + (-b).

Proposition 2.3. Let K be a field and $a, b \in K$. Then

- (i) $\exists ! x \in K : a + x = b$, namely x = b a;
- (ii) -(-a) = a;
- (iii) -(a+b) = -a b.

Proposition 2.4. Let K be a field and $a, b \in K$ with $a \neq 0$. Then

- (i) $\exists ! x \in K : ax = b$, namely $x = \frac{b}{a}$;
- (ii) $(a^{-1})^{-1} = a;$
- (iii) $(ab)^{-1} = b^{-1}a^{-1}$ provided $ab \neq 0$.

Proposition 2.5. Let K be a field and $a, b, c, d \in K$. Then

- (i) $ab = 0 \iff a = 0 \text{ or } b = 0;$
- (ii) (-1)a = -a and (-a)(-b) = ab;
- (iii) $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ provided $bd \neq 0$;
- (iv) $\frac{a}{b}: \frac{c}{d} = \frac{ad}{bc}$ provided $bcd \neq 0$.

Proposition 2.6. In a field we always have $1 \neq 0$.

2.2. The Positivity Axioms

Definition 2.7. Let K be a field. We call K ordered if there exists a set $\mathcal{P} \subset K$ that satisfies the *positivity axioms*:

- $(\mathbf{P}_1) \ a, b \in \mathcal{P} \implies a+b, ab \in \mathcal{P};$
- (P₂) $\forall a \in K$ either $a \in \mathcal{P}$ or $-a \in \mathcal{P}$ or a = 0 (trichotomy).

Notation 2.8. We write a > b if $a - b \in \mathcal{P}$, a < b if $b - a \in \mathcal{P}$, $a \ge b$ if a > b or a = b, $a \le b$ if a < b or a = b.

Proposition 2.9. Let K be an ordered field and $a, b, c, d \in K$. Then

- (i) $a^2 > 0$ if $a \neq 0$; (ii) 1 > 0; (iii) $a > 0 \implies a^{-1} > 0$; (iv) a < b and $b < c \implies a < c$ (transitivity); (v) a < b and $c > 0 \implies ac < bc$; (vi) a < b and $c < 0 \implies ac > bc$; (vii) $0 < a < b \implies 0 < \frac{1}{b} < \frac{1}{a}$; (viii) a > 0 and $b > 0 \implies ab > 0$; a < 0 and $b < 0 \implies ab > 0$; a > 0 and b < 0 $0 \implies ab < 0$; (ix) $a = b \iff a < b$ and b < a;
- (1x) $a = b \iff a \le b \text{ and } b \le a$,
- $(\mathbf{x}) \ 0 < a < b \implies 0 < a^2 < b^2.$

Remark 2.10. There is no ordered field K such that $a^2 = -1$ for some $a \in K$.

Proposition 2.11. Let K be an ordered field and $a, b \in K$ with a < b. Then there exists $c \in K$ with a < c < b, e.g., $c := \frac{a+b}{2}$, where 2 := 1 + 1.

Notation 2.12. If K is an ordered field and $a, b \in K$, then we put

$$(a,b) := \{ x \in K : a < x < b \},$$
$$[a,b] := \{ x \in K : a \le x \le b \},$$
$$(a,b] := \{ x \in K : a < x \le b \},$$

and

$$[a,b) := \{ x \in K : a \le x < b \}.$$

Definition 2.13. Let K be an ordered field and $T \subset K$ with $T \neq \emptyset$. An $m \in T$ is called *minimum* (or *maximum*) of T provided $m \leq t$ (or $m \geq t$) for all $t \in T$. We write $m = \min T$ (or $m = \max T$).

Proposition 2.14. Let K be an ordered field and $T \subset K$ with $T \neq \emptyset$. If min T (or max T) exists, then it is uniquely determined.

Example 2.15. For T = (0, 1] we have max T = 1 and min T does not exist.

2.3. The Completeness Axiom

Definition 2.16. Let K be an ordered field and $T \subset K$. We call

- (i) $s \in K$ an upper (or lower) bound of T if $t \leq s$ (or $t \geq s$) for all $t \in T$;
- (ii) T bounded above (or bounded below) if it has an upper (or lower) bound;
- (iii) T bounded if it is bounded above and below;
- (iv) $s = \sup T$ the supremum of T (and the infimum inf T analogously) if
 - (a) s is an upper bound of T and
 - (b) $s \leq \tilde{s}$ for all upper bounds \tilde{s} of T.

Proposition 2.17. Let K be an ordered field and $T \subset K$. Then

 $m = \max T \text{ exists } \iff s = \sup T \text{ exists and } s \in T,$

and then s = m.

Theorem 2.18. Let K be an ordered field and $T \subset K$. Then

$$s = \sup T \iff \begin{cases} \forall t \in T : s \ge t & and \\ \forall \varepsilon > 0 \; \exists t \in T : t > s - \varepsilon. \end{cases}$$

- **Definition 2.19** (Definition of \mathbb{R}). (i) An ordered field K is called *complete* if $\sup T \in K$ exists whenever $T \subset K$ is a nonempty set that is bounded above (*completeness axiom*).
 - (ii) An ordered field that is complete is called the *field of the real numbers*. We denote it by R.

Theorem 2.20. If $\emptyset \neq S \subset \mathbb{R}$ is bounded below, then $\inf S$ exists.

Theorem 2.21. If $\emptyset \neq S, T \subset \mathbb{R}$ and $\forall s \in S \ \forall t \in T : s \leq t$, then $\sup S \leq \inf T$.

Theorem 2.22. In \mathbb{R} we have $\forall c \ge 0 \exists ! s \ge 0 : s^2 = c$.

Notation 2.23. The s from Theorem 2.22 is denoted by \sqrt{c} .

2.4. The Natural Numbers

Definition 2.24 (Definition of \mathbb{N}). (i) A set $M \subset \mathbb{R}$ is called *inductive* if

- (a) $1 \in M$ and
- (b) $x \in M \implies x+1 \in M$.
- (ii) The intersection of all inductive subsets of R is called the set of the *natural* numbers. We denote it by N. Also, we put N₀ = N ∪ {0}.

Proposition 2.25 (Properties of \mathbb{N}). (i) \mathbb{N} is inductive;

- (ii) $\mathbb{N} \subset M$ whenever $M \subset \mathbb{R}$ is inductive;
- (iii) if $A \subset \mathbb{N}$ and A is inductive, then $A = \mathbb{N}$;
- (iv) $\min \mathbb{N} = 1$.

Theorem 2.26 (Principle of Mathematical Induction). Let S(n) be some statement for each $n \in \mathbb{N}$. If

- (i) S(1) is true and
- (ii) S(k) is true $\implies S(k+1)$ is true $\forall k \in \mathbb{N}$,

then S(n) is true for all $n \in \mathbb{N}$.

Example 2.27. $1+2+\cdots+n=\frac{n(n+1)}{2}$ holds for all $n \in \mathbb{N}$.

Proposition 2.28. Let $m, n \in \mathbb{N}$. Then $m + n \in \mathbb{N}$ and $m \cdot n \in \mathbb{N}$.

Theorem 2.29 (The Well-Ordering Principle). Let $\emptyset \neq A \subset \mathbb{N}$. Then min A exists.

Theorem 2.30 (The Archimedean Property). $\forall c \in \mathbb{R} \ \exists n \in \mathbb{N} : n > c.$

Corollary 2.31. $\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon.$

Definition 2.32 (Definition of \mathbb{Z} and \mathbb{Q}). We define the following sets.

- (i) $\mathbb{Z} := \{a : a \in \mathbb{N}_0 \text{ or } -a \in \mathbb{N}_0\}$ is called the set of *integers*.
- (ii) $\mathbb{Q} := \left\{ \frac{p}{q} : p \in \mathbb{Z} \text{ and } q \in \mathbb{Z} \setminus \{0\} \right\}$ is called the set of *rational* numbers.
- (iii) The set $\mathbb{R} \setminus \mathbb{Q}$ is called the set of *irrational* numbers.

Proposition 2.33. Let $T \subset \mathbb{Z}$ be nonempty.

- (i) If T is bounded above, then max T exists;
- (ii) If T is bounded below, then $\min T$ exists.

Theorem 2.34. $\mathbb{R} \setminus \mathbb{Q} \neq \emptyset$, more precisely, $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

2.5. Some Inequalities and Identities

Notation 2.35. Let $m, n \in \mathbb{Z}$ and $a_k \in \mathbb{R}$ for $k \in \mathbb{Z}$. We put

$$\sum_{k=m}^{n} a_{k} = \begin{cases} 0 & \text{if } n < m \\ a_{m} & \text{if } n = m \\ \sum_{k=m}^{n-1} a_{k} + a_{n} & \text{if } n > m \end{cases} \text{ and } \prod_{k=m}^{n} a_{k} = \begin{cases} 1 & \text{if } n < m \\ a_{m} & \text{if } n = m \\ \begin{pmatrix} n-1 \\ \prod_{k=m}^{n-1} a_{k} \end{pmatrix} a_{n} & \text{if } n > m. \end{cases}$$

The following rules are clear:

n

(i)
$$\sum_{k=m}^{n} a_k = \sum_{\nu=m}^{n} a_{\nu};$$

(ii)
$$\sum_{k=m}^{n} a_k = \sum_{k=m+p}^{n+p} a_{k-p} \text{ for all } p \in \mathbb{Z};$$

(iii)
$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{n} a_{n+m-k};$$

(iv)
$$\sum_{k=m}^{n} ca_k = c \sum_{k=m}^{n} a_k;$$

(v)
$$\sum_{k=m}^{n} 1 = n - m + 1 \text{ if } n \ge m.$$

Example 2.36. $\sum_{k=m}^{n} \Delta a_k$ is called a *telescoping* sum, where $\Delta a_k := a_{k+1} - a_k$ is called the *forward difference operator*. We have $\sum_{k=m}^{n} \Delta a_k = a_{n+1} - a_m$.

Definition 2.37. Let $n \in \mathbb{N}_0$ and $\alpha \in \mathbb{R}$. Then we define n! (read "*n factorial*") and the *binomial coefficient* $\binom{\alpha}{n}$ (read " α choose n") by

$$n! := \prod_{k=1}^{n} k$$
 and $\binom{\alpha}{n} := \frac{\prod\limits_{k=1}^{n} (\alpha + 1 - k)}{n!}$.

Proposition 2.38. Let $m, n \in \mathbb{N}_0$ and $\alpha \in \mathbb{R}$. Then

- (i) $\binom{\alpha}{n} + \binom{\alpha}{n+1} = \binom{\alpha+1}{n+1};$
- (ii) $\binom{m}{n} = \frac{m!}{n!(m-n)!}$ if $m \ge n$ (and 0 if m < n);
- (iii) $\binom{m}{n} = \binom{m}{m-n}$ if $m \ge n$.

Definition 2.39. Let $a \in \mathbb{R}$. We define $a^0 = 1$, $a^1 = a$, and $a^{n+1} = a^n a$ for each $n \in \mathbb{N}$. If $-n \in \mathbb{N}$, then we put $a^n = \left(\frac{1}{a}\right)^{-n}$.

Proposition 2.40. Let $a, b \in \mathbb{R} \setminus \{0\}$ and $p, q \in \mathbb{Z}$. Then

- (i) $a^p a^q = a^{p+q};$
- (ii) $(a^p)^q = a^{pq};$
- (iii) $(ab)^p = a^p b^p$.

Theorem 2.41 (The Binomial Formula). Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}_0$. Then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Example 2.42. $\sum_{k=0}^{n} {n \choose k} = 2^n$ for $n \in \mathbb{N}_0$ and $\sum_{k=0}^{n} {n \choose k} (-1)^k = 0$ for $n \in \mathbb{N}$.

Theorem 2.43 (Finite Geometric Series). Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}_0$. Then

$$\sum_{k=0}^{n} a^{k} = \frac{a^{n+1}-1}{a-1} \text{ if } a \neq 1 \quad and \quad a^{n+1}-b^{n+1} = (a-b)\sum_{k=0}^{n} a^{k}b^{n-k}.$$

Theorem 2.44 (Bernoulli's Inequality). Let $n \in \mathbb{N}_0$ and $x \ge -1$. Then we have

$$(1+x)^n \ge 1 + nx.$$

Definition 2.45. Let $x \in \mathbb{R}$. Then the *absolute value* of x is defined by

$$|x| := \max\{x, -x\}.$$

Proposition 2.46. Let $a, b \in \mathbb{R}$. Then

(i) |a| = |-a|;

- (ii) $|a| \ge 0$; and $|a| = 0 \iff a = 0$;
- (iii) |ab| = |a||b|;
- (iv) $a = 0 \iff |a| < \varepsilon \ \forall \varepsilon > 0.$

Theorem 2.47 (Triangle Inequalities). If $a, b \in \mathbb{R}$, then

$$||a| - |b|| \le |a + b| \le |a| + |b|.$$

Remark 2.48. Define d(x, y) := |x - y| for $x, y \in \mathbb{R}$. Then

- (i) d(x,y) = d(y,x);
- (ii) $d(x,y) \ge 0$; and $d(x,y) = 0 \iff x = y$;
- (iii) $d(x, z) \le d(x, y) + d(y, z)$.

2. THE REAL NUMBER SYSTEM

Sequences of Real Numbers

3.1. The Convergence of Sequences

Definition 3.1. If $x : \mathbb{N} \to \mathbb{R}$ is a function, then we call x a sequence (of real numbers). Instead of x(n) we rather write $x_n, n \in \mathbb{N}$. The sequence s defined by $s_n = \sum_{k=1}^n x_k, n \in \mathbb{N}$, is also known as a series.

Example 3.2. (i) $a_n = 1 + (-1)^n$;

- (ii) $a_n = \max\{k \in \mathbb{N} : k \le \sqrt{n^3}\};$
- (iii) $x_0 = 1$ and $x_{n+1} = 2x_n$ for all $n \in \mathbb{N}_0$;
- (iv) $f_0 = f_1 = 1$ and $f_{n+2} = f_{n+1} + f_n$ for all $n \in \mathbb{N}_0$;
- (v) $a_n = \sum_{k=1}^n \frac{1}{k}$.

Definition 3.3. A sequence *a* is said to be *convergent* if

$$\exists \alpha \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : \ |a_n - \alpha| < \varepsilon.$$

We write $\alpha = \lim_{n \to \infty} a_n$ or $a_n \to \alpha$ (as $n \to \infty$). A sequence is called *divergent* if it is not convergent.

Example 3.4. (i) $a_n = \frac{2n}{4n+3}$; (ii) $a_n = (-1)^n$.

Proposition 3.5. Any sequence has at most one limit.

Proposition 3.6 (Some Limits). We have

- (i) If $a_n = \alpha$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n = \alpha$;
- (ii) $\lim_{n\to\infty}\frac{1}{n}=0;$
- (iii) if |x| < 1, then $\lim_{n \to \infty} x^n = 0$;
- (iv) if |x| < 1, then $\lim_{n \to \infty} \sum_{k=0}^{n} x^k = \frac{1}{1-x}$.

Definition 3.7. A sequence a is called *bounded* (or bounded above, or bounded below) if the set $\{a_n : n \in \mathbb{N}\}$ is bounded (or bounded above, or bounded below).

Proposition 3.8 (Necessary Conditions for Convergence). Let a be a convergent sequence. Then

- (i) a is bounded;
- (ii) a satisfies the Cauchy Condition, i.e.,

 $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall m, n \ge N \; |a_n - a_m| < \varepsilon.$

Remark 3.9. $a_n \rightarrow \alpha$ implies $a_{n+1} - a_n \rightarrow 0$, $a_{2n} - a_n \rightarrow 0$.

Example 3.10. (i) $a_n = (-1)^n$; (ii) $a_n = \sum_{k=1}^n \frac{1}{k}$ (the harmonic series).

Theorem 3.11. Suppose $a_n \to \alpha$ and $b_n \to \beta$ as $n \to \infty$. Then

- (i) $|a_n| \to |\alpha|;$
- (ii) $a_n + b_n \to \alpha + \beta;$
- (iii) $\forall c \in \mathbb{R} : ca_n \to c\alpha;$
- (iv) $a_n \cdot b_n \to \alpha \beta$;
- (v) $\frac{a_n}{b_n} \to \frac{\alpha}{\beta}$ if $\beta \neq 0$.

Example 3.12. (i) $a_n \to \alpha, \ m \in \mathbb{N} \implies a_n^m \to \alpha^m;$ (ii) $\frac{n^2-3}{2n^2+3n} \to \frac{1}{2} \text{ as } n \to \infty.$

Theorem 3.13. Suppose $a_n \to \alpha$, $b_n \to \beta$, $c_n \in \mathbb{R}$. Then

(i) $\exists K \in \mathbb{R} \ \forall n \in \mathbb{N} : \ |a_n| \le K \implies |\alpha| \le K;$ (ii) $\forall n \in \mathbb{N} : \ a_n \le b_n \implies \alpha \le \beta;$ (iii) $\alpha = \beta \ and \ \forall n \in \mathbb{N} : \ a_n \le c_n \le b_n \implies \lim_{n \to \infty} c_n = \alpha.$

3.2. Monotone Sequences

Definition 3.14. A sequence *a* is called *monotonically increasing* (or monotonically decreasing, strictly increasing, strictly decreasing) provided $a_n \leq a_{n+1}$ ($a_n \geq a_{n+1}$, $a_n < a_{n+1}$, $a_n > a_{n+1}$) holds for all $n \in \mathbb{N}$. We write $a_n \nearrow (\searrow, \uparrow, \downarrow)$. The sequence is called *monotone* if it is either one of the above.

Theorem 3.15 (The Monotone Convergence Theorem). A monotone sequence converges iff it is bounded.

Example 3.16. (i) $a_1 = 2$ and $a_{n+1} = \frac{a_n+6}{2}$ for all $n \in \mathbb{N}$;

- (ii) $s_n = \sum_{k=1}^n \frac{1}{k};$ (iii) $s_n = \sum_{k=1}^n \frac{1}{k^{2k}};$
- $(\mathbf{m}) \circ_n \qquad \mathbf{i} = 1 \quad k \geq k,$
- (iv) $a_n = \left(1 + \frac{1}{n}\right)^n$. We denote the limit of this sequence by e.

Definition 3.17. Let a_n be a sequence and let n_k be a sequence of natural numbers that is strictly increasing. Then the sequence b_k defined by $b_k = a_{n_k}$ for $k \in \mathbb{N}$ is called a *subsequence* of the sequence a_n .

Theorem 3.18. Every sequence has a monotone subsequence.

Theorem 3.19 (Bolzano–Weierstraß). Let $a, b \in \mathbb{R}$ with a < b. Every sequence in [a, b] has a convergent subsequence that has its limit in [a, b].

Theorem 3.20 (Cauchy). A real sequence converges iff it is a Cauchy sequence.

Proposition 3.21. Let a_n be a convergent sequence with $\lim_{n\to\infty} a_n = \alpha$. Then every subsequence a_{n_k} of a_n converges with $\lim_{k\to\infty} a_{n_k} = \alpha$.

Example 3.22. (i) $a_n \to \alpha \implies a_{2n} \to \alpha, a_{n+1} \to \alpha;$ (ii) $\left(1 + \frac{1}{2n}\right)^{2n}, \left(1 + \frac{1}{n^2}\right)^{n^2};$ (iii) $(-1)^n \left(1 + \frac{1}{n}\right).$

Theorem 3.23 (The Nested Interval Theorem). Let $a_n, b_n \in \mathbb{R}$ with $a_n < b_n$ for all $n \in \mathbb{N}$, put $I_n = [a_n, b_n]$, and assume $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$ and $b_n - a_n \to 0$ as $n \to \infty$. Then $\bigcap_{n \in \mathbb{N}} I_n = \{\alpha\}$ with $\alpha \in \mathbb{R}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \alpha$ exist. 3. SEQUENCES OF REAL NUMBERS

Continuous Functions

Definition 4.1. A function $f: D \to \mathbb{R}$ is said to be *continuous* at (or in) $x_0 \in D$ provided

$$\{x_n: n \in \mathbb{N}\} \subset D, \lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0)$$

Also, f is called *continuous* if it is continuous at each $x_0 \in D$.

Example 4.2. (i) $f(x) = x^2 + 3x - 2, x \in \mathbb{R};$

- (ii) $f(x) = \sqrt{x}, x \ge 0;$ (iii) $f = \chi_{[0,1]};$
- (iv) $f = \chi_{\mathbb{Q}}$ is called the *Dirichlet function*.

Notation 4.3. For two functions $f, g: D \to \mathbb{R}$ we define the sum $f + g: D \to \mathbb{R}$ and the product $f \cdot g: D \to \mathbb{R}$ by (f+g)(x) = f(x) + g(x) and $(f \cdot g)(x) = f(x)g(x)$ for $x \in D$. If $g(x) \neq 0$ for all $x \in D$, then $\frac{f}{g}: D \to \mathbb{R}$ is defined by $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ for $x \in D$.

Theorem 4.4. Let $f, g: D \to \mathbb{R}$ be continuous functions. Then $f + g, f \cdot g: D \to \mathbb{R}$ are continuous. If $g(x) \neq 0$ for all $x \in D$, then $\frac{f}{g}: D \to \mathbb{R}$ is continuous.

Corollary 4.5. Let $m \in \mathbb{N}$, $c_k \in \mathbb{R}$ $(0 \le k \le m)$, and $p : \mathbb{R} \to \mathbb{R}$ be defined by $p(x) = \sum_{k=0}^{m} c_k x^k$, i.e., p is a polynomial with degree m if $c_m \ne 0$. Then p is continuous. Also, if p, q are both polynomials and $D = \{x \in \mathbb{R} : q(x) \ne 0\}$, then the rational function $\frac{p}{q} : D \to \mathbb{R}$ is continuous.

Theorem 4.6. If $f: D \to \mathbb{R}$, $g: U \to \mathbb{R}$ are functions with $f(D) \subset U$ such that f is continuous at $x_0 \in D$ and g is continuous at $f(x_0) \in U$, then $g \circ f: D \to \mathbb{R}$ is continuous at $x_0 \in D$.

Example 4.7. $\sqrt{1-x^2}, x \in [-1,1].$

Theorem 4.8. Let $f : [a, b] \to \mathbb{R}$ be continuous, where $a, b \in \mathbb{R}$ with a < b. Assume f(a) < 0 and f(b) > 0. Then $\exists \alpha \in (a, b) : f(\alpha) = 0$.

Theorem 4.9 (The Intermediate Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous, where $a, b \in \mathbb{R}$ with a < b. If f(a) < c < f(b) or f(b) < c < f(a), then $\exists \alpha \in (a, b) :$ $f(\alpha) = c$.

Example 4.10. (i) $h(x) = x^5 + x + 1$, $x \in \mathbb{R}$, has a zero in (-2, 0);

- (ii) $h(x) = \frac{1}{\sqrt{1+x^2}} x^2, x \in \mathbb{R}$, has a zero in (0,1);
- (iii) if $I \subset \mathbb{R}$ is an interval and $f: I \to \mathbb{R}$ is continuous, then f(I) is an interval.

Theorem 4.11 (The Extreme Value Theorem). Let $f : I = [a, b] \rightarrow \mathbb{R}$ be continuous, where $a, b \in \mathbb{R}$ with a < b. Then both max f(I) and min f(I) exist.

Definition 4.12. Let $D \subset \mathbb{R}$. The function $f: D \to \mathbb{R}$ is called *strictly increasing* (or strictly decreasing, increasing, decreasing) if f(v) > f(u) (or f(v) < f(u), $f(v) \ge f(u), f(v) \le f(u)$) holds for all $u, v \in D$ with u < v. We write $f \uparrow (\downarrow, \nearrow, \searrow)$. Also, f is called strictly monotone if it is either strictly increasing or strictly decreasing.

Theorem 4.13. Let $f : I \to f(I)$ be strictly monotone, where I is an interval. Then f is invertible and $f^{-1} : f(I) \to I$ is continuous and strictly monotone.

Corollary 4.14. Suppose I is an interval and $f : I \to \mathbb{R}$ is strictly monotone. Then f is continuous iff f(I) is an interval.

Theorem 4.15. Let $x_0 \in D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$. Then f is continuous at x_0 iff

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; (\forall x \in D : \; |x - x_0| < \delta) \quad |f(x) - f(x_0)| < \varepsilon.$

Example 4.16. (i) $f(x) = \sqrt{x}$, $f: [0, \infty) \to [0, \infty)$ is continuous at $x_0 = 4$;

- (ii) $f(x) = x^3, f : \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 = 2$;
- (iii) f from (ii) is continuous on D = [0, 20];
- (iv) $f(x) = \frac{1}{x}, f: (0,1) \to \mathbb{R}.$

Definition 4.17. Let $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$. Then f is called *uniformly continuous* (on D) if

$$\forall \varepsilon > 0 \; \exists \delta > 0: \; (\forall u, v \in D: \; |u - v| < \delta) \quad |f(u) - f(v)| < \varepsilon.$$

Theorem 4.18. Let $f : [a, b] \to \mathbb{R}$ be continuous, where $a, b \in \mathbb{R}$ with a < b. Then f is uniformly continuous.

4. CONTINUOUS FUNCTIONS

Differentiation

5.1. Differentiation Rules

- **Definition 5.1.** (i) An $x_0 \in \mathbb{R}$ is called a *limit point* of D if there exists $\{x_n : n \in \mathbb{N}\} \subset D \setminus \{x_0\}$ with $\lim_{n \to \infty} x_n = x_0$.
 - (ii) We write $\lim_{x\to x_0, x\in D} f(x) = l$ provided x_0 is a limit point of D and $\lim_{n\to\infty} f(x_n) = l$ whenever $\{x_n : n \in \mathbb{N}\} \subset D \setminus \{x_0\}$ with $\lim_{n\to\infty} x_n = x_0$.

Example 5.2. (i) $\lim_{x\to 4} (x^2 - 2x + 3) = 11;$ (ii) $\lim_{x\to 1} \frac{x^2 - 1}{x - 1} = 2.$

- **Remark 5.3.** (i) Let $x_0 \in D$ be a limit point of D. Then $f : D \to \mathbb{R}$ is continuous at x_0 iff $\lim_{x\to x_0} f(x) = f(x_0)$.
 - (ii) If x_0 is a limit point of D and $f, g: D \to \mathbb{R}$ with $\lim_{x \to x_0} f(x) = \alpha \in \mathbb{R}$ and $\lim_{x \to x_0} g(x) = \beta \in \mathbb{R}$, then (by Theorem 3.11)

$$\lim_{x \to x_0} \left((f+g)(x) \right) = \alpha + \beta, \quad \lim_{x \to x_0} \left((fg)(x) \right) = \alpha \beta,$$

and (if $\beta \neq 0$)

$$\lim_{x \to x_0} \left((f/g)(x) \right) = \alpha/\beta.$$

Definition 5.4. Let $x_0 \in (a, b) = I$. A function $f : I \to \mathbb{R}$ is called *differentiable* at (or in) x_0 provided

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists, in which case we denote this limit by $f'(x_0)$. Also, f is called differentiable (on I) if f'(x) exists for all $x \in I$. In this case, $f': I \to \mathbb{R}$ is called the *derivative* of f.

Example 5.5. (i) f(x) = 4x - 5;

- (ii) f(x) = mx + b;
- (iii) $f(x) = x^2;$

(iv) f(x) = |x|.

Proposition 5.6. Let $m \in \mathbb{N}$. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^m$ for all $x \in \mathbb{R}$. Then f is differentiable and $f'(x) = mx^{m-1}$.

Proposition 5.7. Let $x_0 \in (a, b) = I$. If $f : I \to \mathbb{R}$ is differentiable at x_0 , then it is continuous at x_0 .

Theorem 5.8 (Rules of Differentiation). Let $x_0 \in (a, b) = I$.

 (i) If f,g: I → ℝ are differentiable in x₀, then so is αf + βg for all α, β ∈ ℝ, fg, and (if g(x₀) ≠ 0) f/g with

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0),$$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0) \quad \text{Product Rule,}$$

$$(f/g)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2} \quad \text{Quotient Rule.}$$

(ii) If $g: I \to g(I)$ is differentiable in x_0 and if $f: J \to \mathbb{R}$ with $J \supset g(I)$ is differentiable in $g(x_0)$, then $f \circ g: I \to \mathbb{R}$ is differentiable in x_0 with

$$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$$
 Chain Rule.

(iii) If $f: I \to f(I)$ is continuous and strictly monotone and differentiable in x_0 with $f'(x_0) \neq 0$, then $f^{-1}: f(I) \to I$ is differentiable in $y_0 = f(x_0)$ with

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Example 5.9. (i) $f(x) = \sqrt[n]{x}$;

(ii) $f(x) = x^{p/q}$.

5.2. The Mean Value Theorems

Definition 5.10. Suppose I = (a, b) with a < b and $f : I \to \mathbb{R}$.

- (i) An $x_0 \in I$ is called a *local maximizer* (or local minimizer) of f, if there exists $\delta > 0$ such that $f(x_0) \ge f(x)$ (or $f(x_0) \le f(x)$) for all $x \in I$ with $|x x_0| < \delta$.
- (ii) An $x_0 \in I$ for which $f'(x_0)$ exists is called a *critical point* of f provided $f'(x_0) = 0$.

Theorem 5.11. Suppose I = (a, b) with a < b and $f : I \to \mathbb{R}$. Assume that $x_0 \in I$ is such that $f'(x_0)$ exists. If x_0 is a local maximizer (or minimizer) of f, then it is a critical point.

Theorem 5.12 (Rolle's Theorem). Suppose that $f : [a,b] \to \mathbb{R}$ with a < b is continuous on [a,b] and differentiable on (a,b). Assume f(a) = f(b) = 0. Then there exists a critical point of f in (a,b).

Theorem 5.13 (The Lagrange Mean Value Theorem). Suppose that $f : [a, b] \to \mathbb{R}$ with a < b is continuous on [a, b] and differentiable on (a, b). Then

$$\exists x_0 \in (a,b): f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Theorem 5.14 (The Cauchy Mean Value Theorem). Suppose that $f, g : [a, b] \to \mathbb{R}$ with a < b both are continuous on [a, b] and differentiable on (a, b). Then

$$\exists x_0 \in (a,b): f'(x_0) \{g(b) - g(a)\} = g'(x_0) \{f(b) - f(a)\}.$$

Example 5.15. (i) $f, g : [0,3] \to \mathbb{R}$ defined by $f(x) = 3 - x^2$ and $g(x) = \sqrt{9 - x^2}$:

(ii) $e(x) \ge 1 + x$ for all $x \in \mathbb{R}$;

(iii) Generalized Bernoulli inequality.

5.3. Applications of the Mean Value Theorems

Theorem 5.16 (The Identity Criterion). Let $I \subset \mathbb{R}$ be an interval and suppose that $f: I \to \mathbb{R}$ is differentiable on I. Then f is constant on I (i.e., there exists $c \in \mathbb{R}$ such that f(x) = c for all $x \in I$) iff f'(x) = 0 for all $x \in I$.

Theorem 5.17. Let I be an interval and $f: I \to \mathbb{R}$ be differentiable on I.

- (i) If f'(x) > 0 for all $x \in I$, then f is strictly increasing on I.
- (ii) If f'(x) < 0 for all $x \in I$, then f is strictly decreasing on I.

Example 5.18. (i) *e* and *l* are strictly increasing;

(ii) $f(x) = \frac{ax+b}{cx+d}$.

Theorem 5.19 (L'Hôpital's Rules). Let $I = [a, b) \subset \mathbb{R}$, a < b, $b \in \mathbb{R}$ or $b = \infty$, and suppose that $f, g: I \to \mathbb{R}$ are differentiable on I with $g'(x) \neq 0$ for all $x \in I$. Assume that $\alpha = \lim_{x \to b, x < b} \frac{f'(x)}{g'(x)}$ exists. If either

$$\lim_{x \to b, x < b} f(x) = \lim_{x \to b, x < b} g(x) = 0 \quad or \quad \lim_{x \to b, x < b} g(x) = \infty,$$

then $\lim_{x\to b,x<b} \frac{f(x)}{g(x)}$ exists and is equal to α .

Example 5.20. (i) $\lim_{x\to 0} \frac{l(1+x)}{x} = 1;$

- (ii) $\lim_{x \to 0} \frac{l(1+x)-x}{x^2} = -\frac{1}{2};$
- (iii) $\lim_{x\to\infty} x^n e(-x) = 0$ for all $n \in \mathbb{N}$;
- (iv) $\lim_{x \to 0, x > 0} x l(x) = 0;$
- (v) $\lim_{x \to 0, x > 0} A(x, x) = 1.$

Notation 5.21. If I is an interval and $f: I \to \mathbb{R}$ is differentiable with $f': I \to \mathbb{R}$, and $f': I \to \mathbb{R}$ is also differentiable, then we write $f'' = (f')' = f^{(2)}$. If $f^{(k)}$ for $k \in \mathbb{N}$ is defined and differentiable, we put $f^{(k+1)} = (f^{(k)})'$. Also, we put $f^{(0)} = f$.

Theorem 5.22. Let I be an interval, $n \in \mathbb{N}$, and suppose $f : I \to \mathbb{R}$ has n derivatives. If $f^{(k)}(x_0) = 0$ for all $0 \le k \le n - 1$ for some $x_0 \in I$, then, for each $x \in I \setminus \{x_0\}$, there exists a point z strictly between x and x_0 with

$$f(x) = \frac{f^{(n)}(z)}{n!} (x - x_0)^n.$$

Theorem 5.23. Let I be an interval and suppose $f : I \to \mathbb{R}$ is such that the below derivatives exist and are continuous. Assume $x_0 \in I$ is a critical point of f.

- (i) If $f''(x_0) > 0$, then x_0 is a local minimizer of f.
- (ii) If $f''(x_0) < 0$, then x_0 is a local maximizer of f.
- (iii) If $f''(x_0) = 0$ and $f'''(x_0) \neq 0$, then x_0 is neither a local minimizer nor a local maximizer of f.
- (iv) If $f''(x_0) = 0$ and $f'''(x_0) = 0$ and $f''''(x_0) > 0$, then x_0 is a local minimizer of f.
- (v) If $f''(x_0) = 0$ and $f'''(x_0) = 0$ and $f''''(x_0) < 0$, then x_0 is a local maximizer of f.

Theorem 5.24 (Lagrange Remainder Theorem). Let I be an open interval containing the point x_0 and let $n \in \mathbb{N}_0$. Suppose that $f: I \to \mathbb{R}$ has n + 1 derivatives. Then for each $x \in I \setminus \{x_0\}$, there exists z strictly between x and x_0 such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(z)}{(n+1)!} (x - x_0)^{n+1}.$$

Definition 5.25. Let I be an open interval containing x_0 and $n \in \mathbb{N}_0$. Suppose that $f : I \to \mathbb{R}$ has n derivatives. The *n*th *Taylor polynomial* for the function $f : I \to \mathbb{R}$ at the point x_0 is defined as

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Example 5.26. Find p_3 for f(x) = 1/x at $x_0 = 1$.

Theorem 5.27. Let I be an open interval containing x_0 and suppose $f : I \to \mathbb{R}$ has derivatives of all orders. Suppose there are positive numbers r and M such that $[x_0 - r, x_0 + r] \subset I$ and $|f^{(n)}(x)| \leq M^n$ for all $x \in [x_0 - r, x_0 + r]$. Then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \quad \text{if} \quad |x - x_0| \le r.$$

Example 5.28. $e(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. Note also that $e \in \mathbb{R} \setminus \mathbb{Q}$.

5. DIFFERENTIATION

Integration

6.1. The Definition of the Integral

Definition 6.1. Let $f : [a,b] \to \mathbb{R}$ with a < b be a function. If $a = x_0 < x_1 < x_2 < \cdots < x_n = b$, then $\mathcal{Z} = \{x_0, x_1, \cdots, x_n\}$ is called a *partition* of the interval [a,b] with $gap \|\mathcal{Z}\| = \max\{x_k - x_{k-1} : 1 \le k \le n\}$, and if $\xi_k \in [x_{k-1}, x_k]$ for all $1 \le k \le n$, then we call $\xi = (\xi_1, \xi_2, \cdots, \xi_n)$ intermediate points of the partition \mathcal{Z} . The sum

$$S(f, Z, \xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$$

is called a Riemann sum. If ξ is such that $f(\xi_k) = \inf f([x_{k-1}, x_k])$ for all $1 \le k \le n$ (or $f(\xi_k) = \sup f([x_{k-1}, x_k])$ for all $1 \le k \le n$), then we call $L(f, \mathcal{Z}) = S(f, \mathcal{Z}, \xi)$ the lower Darboux sum (or $U(f, \mathcal{Z}) = S(f, \mathcal{Z}, \xi)$ the upper Darboux sum).

Definition 6.2. A function $f : [a, b] \to \mathbb{R}$ with a < b is said to be *Riemann* integrable if $\lim_{n\to\infty} S(f, \mathbb{Z}_n, \xi^n)$ exists for any sequence of partitions \mathbb{Z}_n with $\lim_{n\to\infty} \|\mathbb{Z}_n\| = 0$ and with intermediate points ξ^n .

Remark 6.3. If $f : [a, b] \to \mathbb{R}$ is Riemann integrable, then, no matter what sequences \mathcal{Z}_n and ξ^n we take, the limit of $S(f, \mathcal{Z}_n, \xi^n)$ as $n \to \infty$ is always the same. We then call this limit $\int_a^b f(x) dx = \int_a^b f$.

Example 6.4. f(x) = x, I = [a, b].

Proposition 6.5. Let a < b and I = [a, b].

 (i) If f,g: I → ℝ are Riemann integrable, then so is αf + βg for all α, β ∈ ℝ with

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

(ii) If f(x) = c for all $x \in I$, then f is Riemann integrable with $\int_a^b f = c(b-a)$.

6. INTEGRATION

- (iii) If $f, g: I \to \mathbb{R}$ are Riemann integrable and $f(x) \leq g(x)$ for all $x \in I$, then $\int_a^b f \leq \int_a^b g$.
- (iv) If $f: I \to \mathbb{R}$ is Riemann integrable, then f is bounded on I and

$$\inf f(I) \le \frac{\int_a^b f}{b-a} \le \sup f(I)$$

- (v) If $f: I \to \mathbb{R}$ is Riemann integrable and if g(x) = f(x) for all $x \in I$ but a finite number of points $x \in I$, then g is Riemann integrable and $\int_a^b f = \int_a^b g$.
- (vi) If $c \in (a, b)$ and $f : I \to \mathbb{R}$ and $f : [a, c] \to \mathbb{R}$, $f : [c, b] \to \mathbb{R}$ are Riemann integrable, then

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Theorem 6.6. If $f : [a,b] \to \mathbb{R}$ with a < b is continuous, then it is Riemann integrable.

Notation 6.7. If a > b, then we put $\int_a^b f = -\int_b^a f$. We also put $\int_a^a f = 0$.

6.2. The Fundamental Theorem of Calculus

Theorem 6.8 (Fundamental Theorem of Calculus, First Part). Suppose F: $[a,b] \to \mathbb{R}$ is differentiable on [a,b] and F': $[a,b] \to \mathbb{R}$ is Riemann integrable on [a,b]. Then

$$\int_{a}^{b} F' = F(b) - F(a)$$

Definition 6.9. A function $F: I \to \mathbb{R}$ is called an *antiderivative* of $f: I \to \mathbb{R}$ if F is differentiable with F'(x) = f(x) for all $x \in \mathbb{I}$.

Remark 6.10. If f possesses an antiderivative F, then any other antiderivative of f can differ from F only by a constant.

Example 6.11. (i) $\int_0^5 x^3 dx = \frac{5^4}{4}$; (ii) $\int_0^4 e = e(4) - 1$; (iii) $\int_0^p s = 1$; (iv) $\frac{1}{n^6} \sum_{k=1}^n k^5 \to \frac{1}{6}$ as $n \to \infty$.

Theorem 6.12 (Fundamental Theorem of Calculus, Second Part). Let $f : I \to \mathbb{R}$ be continuous on the interval $I \subset \mathbb{R}$ and let $a \in I$. Then

$$F(x) := \int_{a}^{x} f$$
 for each $x \in I$

is an antiderivative of f.

Remark 6.13. Continuous functions possess antiderivatives.

Proposition 6.14. If f is Riemann integrable on I, then F defined in the FTOC (Part II) is continuous (even Lipschitz continuous) on I.

Example 6.15. (i) $\int_{1}^{x} \frac{dt}{t}$; (ii) $\int_{0}^{x} \frac{dt}{1+t^{2}}$.

6.3. Applications

Theorem 6.16. Suppose $f, g : I \to \mathbb{R}$ are continuous, $x_0 \in I$, $y_0 \in \mathbb{R}$. Then there exists exactly one continuously differentiable function y with $y(x_0) = y_0$ and y'(x) = f(x)y(x) + g(x) for all $x \in I$, namely

$$y(x) = e(F(x)) \left\{ y_0 + \int_{x_0}^x g(t)e(-F(t))dt \right\} \quad \text{with} \quad F(x) = \int_{x_0}^x f(t)dt.$$

Example 6.17. $xy' + 2y = 4x^2$, y(1) = 2.

Theorem 6.18 (Integration by Parts). Let $f, g : [a, b] \to \mathbb{R}$ be continuously differentiable. Then

$$\int_a^b f(x)g'(x)\mathrm{d}x = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x)\mathrm{d}x.$$

Example 6.19. $\int_0^1 t e(t) dt = 1.$

Theorem 6.20 (Substitution). If $g : [\alpha, \beta] \to \mathbb{R}$ is continuously differentiable, $f : g([\alpha, \beta]) \to \mathbb{R}$ continuous, then

$$\int_a^b f(g(t))g'(t)\mathrm{d}t = \int_{g(a)}^{g(b)} f(x)\mathrm{d}x.$$

Example 6.21. $\int_0^2 e(\sqrt{x}) dx = 2(\sqrt{2} - 1)e(\sqrt{2}) + 2.$

6.4. Improper Integrals

Definition 6.22. Let a < b and $f : (a, b) \to \mathbb{R}$.

(i) f is said to be *locally integrable* on (a, b) if f is integrable on each closed subinterval [c, d] ⊂ (a, b).

(ii) f is said to be *improperly integrable* on (a, b) if f is locally integrable on (a, b) and if

$$\int_{a}^{b} f(x) \mathrm{d}x := \lim_{c \to a^{+}, d \to b^{-}} \int_{c}^{d} f(x) \mathrm{d}x$$

exists and is finite. This limit is called the *improper Riemann integral* of f over (a, b).

Example 6.23. (i) $\int_0^1 \frac{1}{\sqrt{x}} dx = 2;$ (ii) $\int_1^\infty \frac{1}{x^2} dx = 1.$

Theorem 6.24. If f, g are improperly integrable on (a, b) and $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ is improperly integrable on (a, b), and

$$\int_{a}^{b} (\alpha f + \beta g)(x) \mathrm{d}x = \alpha \int_{a}^{b} f(x) \mathrm{d}x + \beta \int_{a}^{b} g(x) \mathrm{d}x.$$

Theorem 6.25 (Comparison Theorem). Suppose $f, g : (a, b) \to \mathbb{R}$ are locally integrable. If $0 \le f(x) \le g(x)$ for all $x \in (a, b)$, and if g is improperly integrable on (a, b), then f is improperly integrable on (a, b) with

$$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x.$$

Example 6.26. (i) $|s(x)/\sqrt{x^3}|$ is improperly integrable on (0, 1];

(ii) $|l(x)/\sqrt{x^5}|$ is improperly integrable on $[1, \infty)$.

Definition 6.27. Let a < b and $f : (a, b) \to \mathbb{R}$.

- (i) f is said to be absolutely integrable on (a, b) if |f| is improperly integrable on (a, b).
- (ii) f is said to be *conditionally integrable* on (a, b) if f is improperly integrable but not absolutely integrable on (a, b).

Theorem 6.28. If f is locally and absolutely integrable on (a, b), then f is improperly integrable on (a, b), and

$$\left|\int_{a}^{b} f(x) \mathrm{d}x\right| \leq \int_{a}^{b} |f(x)| \mathrm{d}x.$$

Example 6.29. s(x)/x is conditionally integrable on $[1, \infty)$.

Infinite Series of Functions

7.1. Uniform Convergence

Example 7.1. (i) $\lim_{x\to x_0} \lim_{n\to\infty} (1+x/n)^n = \lim_{n\to\infty} \lim_{x\to x_0} (1+x/n)^n$;

- (ii) $\frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} (1 + x/n)^n = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} (1 + x/n)^n;$
- (iii) $\int_0^1 \lim_{n \to \infty} (1 + x/n)^n dx = \lim_{n \to \infty} \int_0^1 (1 + x/n)^n dx;$
- (iv) $f_n(x) = nx/(1+nx), n \to \infty, x \to 0;$
- (v) $f_n(x) = x^n;$
- (vi) $f_n(x) = \frac{s(nx)}{n}$.

Definition 7.2. Let $f_n : I \to \mathbb{R}$ be functions for each $n \in \mathbb{N}$ and let $f : I \to \mathbb{R}$. We say that the sequence f_n converges

- (i) pointwise to f if $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in I$;
- (ii) uniformly to f if

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; (\forall n \ge N \; \forall x \in I) \; |f_n(x) - f(x)| < \varepsilon.$$

The pointwise or uniform convergence of the series $\sum_{k=0}^{\infty} g_k$ is defined as above with $f_n = \sum_{k=0}^n g_k$.

Example 7.3. Let $f_n(x) = x^n$ on [0, 1].

- (i) f_n converges uniformly on [0, 1/2];
- (ii) f_n does not converge uniformly on [0, 1].

Example 7.4. $f_n(x) = 2n^2 x/(1+n^4 x^4)$ is not uniformly convergent on \mathbb{R} .

Theorem 7.5 (Cauchy Criterion). A sequence of functions $f_n : I \to \mathbb{R}$ converges uniformly on I iff

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; (\forall m, n \ge N \; \forall x \in I) \; |f_n(x) - f_m(x)| < \varepsilon.$$

Theorem 7.6 (Weierstraß *M*-Test). Suppose $g_k : I \to \mathbb{R}$ satisfies $|g_k(x)| \leq M_k$ for all $x \in I$ and for all $k \in \mathbb{N}$ such that $\sum_{k=1}^{\infty} M_k$ is convergent. Then $\sum_{k=1}^{\infty} g_k(x)$ is uniformly convergent.

Example 7.7. $\sum_{k=1}^{\infty} \frac{c(k^2\sqrt{x})}{k^3}$ is uniformly convergent on \mathbb{R} .

7.2. Interchanging of Limit Processes

Theorem 7.8 (Continuity of the Limit Function). Let $f_n : I \to \mathbb{R}$ be continuous on I for all $n \in \mathbb{N}$ and suppose that $f_n \to f$ uniformly on I. Then f is continuous on I, i.e.,

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x) \quad \text{for all} \quad x_0 \in I.$$

Example 7.9. $f(x) = \sum_{k=1}^{\infty} \frac{s(kx)}{k^2}$ is continuous on \mathbb{R} .

Theorem 7.10 (Integration of the Limit Function). Let $f_n : I = [a, b] \to \mathbb{R}$ be Riemann integrable on I for all $n \in \mathbb{N}$ and suppose that $f_n \to f$ uniformly on I. Then f is Riemann integrable on I with

$$\left(\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \right) \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Corollary 7.11. $\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(x) dx = \int_{a}^{b} \sum_{k=1}^{\infty} f_{k}(x) dx$ if $f_{k} : [a, b] \to \mathbb{R}$ are Riemann integrable for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} f_{k}(x)$ is uniformly convergent on [a, b].

Theorem 7.12 (Differentiation of the Limit Function). Let $f_n : I = [a, b] \to \mathbb{R}$ be differentiable on I for all $n \in \mathbb{N}$ and suppose that $f'_n \to g$ uniformly on I. Also suppose that $\lim_{n\to\infty} f_n(x_0)$ exists for at least one $x_0 \in I$. Then f_n converges uniformly on I, say to f, and f is differentiable on I with

$$f'(x) = g(x),$$
 i.e., $\lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x) = \frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} f_n(x).$

Corollary 7.13. $\frac{d}{dx} \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \frac{d}{dx} f_k(x)$ if $f_k : [a, b] \to \mathbb{R}$ are differentiable for all $k \in \mathbb{N}$, $\sum_{k=1}^{\infty} f'_k(x)$ is uniformly convergent on [a, b], and $\sum_{k=1}^{\infty} f_k(x_0)$ is convergent for at least one $x_0 \in [a, b]$.

Example 7.14. (i) $\sum_{k=0}^{\infty} a_k (x - x_0)^k$;

- (ii) $\sum_{k=1}^{\infty} \frac{s(kx)}{k^3};$
- (iii) $f_n(x) = \frac{s(n^2 x)}{n}$.