- 1. Let A, B, $C \subset X$ be sets. Prove the following:
 - (a) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C);$
 - (b) $A \subset B \iff A^c \supset B^c$;
 - (c) $A \cup B = A \iff B \subset A;$
 - (d) $(A \cup B)^{c} = A^{c} \cap B^{c}$ and $(A \cap B)^{c} = A^{c} \cup B^{c}$.
- 2. Let $f: X \to Y$ be a function. Assume $A, A_1, A_2 \subset X$ and $B, B_1, B_2 \subset Y$. Compare each of the following two sets (i.e., put either an "=" or " \subset " or " \supset " in between, whichever "is the best") and prove your claim.
 - (a) $f(A_1 \cup A_2)$ and $f(A_1) \cup f(A_2)$;
 - (b) $f(A_1 \cap A_2)$ and $f(A_1) \cap f(A_2)$;
 - (c) $f^{-1}(B_1 \cup B_2)$ and $f^{-1}(B_1) \cup f^{-1}(B_2)$;
 - (d) $f^{-1}(B_1 \cap B_2)$ and $f^{-1}(B_1) \cap f^{-1}(B_2)$;
 - (e) $f^{-1}(f(A))$ and A;
 - (f) $f(f^{-1}(B))$ and B.
- 3. Let X, Y be sets and $f: X \to Y$. Prove that the following are equivalent:
 - (a) f is one-to-one on X;
 - (b) $f(A \setminus B) = f(A) \setminus f(B)$ for all $A, B \subset X$;
 - (c) $f^{-1}(f(E)) = E$ for all $E \subset X$;
 - (d) $f(A \cap B) = f(A) \cap f(B)$ for all $A, B \subset X$.