1. Let $A, B, C \subset X$ be sets. Prove the following:
(a) $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$;
(b) $A \subset B \Longleftrightarrow A^{\mathrm{c}} \supset B^{\mathrm{c}}$;
(c) $A \cup B=A \Longleftrightarrow B \subset A$;
(d) $(A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}}$ and $(A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}}$.
2. Let $f: X \rightarrow Y$ be a function. Assume $A, A_{1}, A_{2} \subset X$ and $B, B_{1}, B_{2} \subset Y$. Compare each of the following two sets (i.e., put either an "=" or " \subset " or " \supset " in between, whichever "is the best") and prove your claim.
(a) $f\left(A_{1} \cup A_{2}\right)$ and $f\left(A_{1}\right) \cup f\left(A_{2}\right)$;
(b) $f\left(A_{1} \cap A_{2}\right)$ and $f\left(A_{1}\right) \cap f\left(A_{2}\right)$;
(c) $f^{-1}\left(B_{1} \cup B_{2}\right)$ and $f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$;
(d) $f^{-1}\left(B_{1} \cap B_{2}\right)$ and $f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$;
(e) $f^{-1}(f(A))$ and A;
(f) $f\left(f^{-1}(B)\right)$ and B.
3. Let X, Y be sets and $f: X \rightarrow Y$. Prove that the following are equivalent:
(a) f is one-to-one on X;
(b) $f(A \backslash B)=f(A) \backslash f(B)$ for all $A, B \subset X$;
(c) $f^{-1}(f(E))=E$ for all $E \subset X$;
(d) $f(A \cap B)=f(A) \cap f(B)$ for all $A, B \subset X$.
