- 51. Define $f(x) = 6x^7 14x^6 + 21x^4 14x^3 + 1$ for $x \in I$, $f: I = [-10, 10] \to \mathbb{R}$. Find min f(I) and max f(I).
- 52. Let $n \in \mathbb{N}$ and suppose $f, g: (a, b) \to \mathbb{R}$ both have n derivatives. Show

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x) \text{ for all } x \in (a,b).$$

- 53. Find all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy
 - (a) f'(x) = f(x) for all $x \in \mathbb{R}$, f(0) = 1;
 - (b) f''(x) = f(x) for all $x \in \mathbb{R}$, f(0) = 0, f'(0) = 1;
 - (c) f''(x) = f(x) for all $x \in \mathbb{R}$, f(0) = 1, f'(0) = 0;
- 54. Consider the problem f''(x) = -f(x) for all $x \in \mathbb{R}$, f(0) = 0, f'(0) = 1.
 - (a) Show that the above problem has at most one solution. (Assume there is a solution and call it s, put c = s'.)
 - (b) Show that s is odd (i.e., $s(-x) = -s(x) \ \forall x \in \mathbb{R}$), that c is even (i.e., $c(-x) = c(x) \ \forall x \in \mathbb{R}$), and that $s^2(a) + c^2(a) = 1$, $|s(a)| \le 1$, $|c(a)| \le 1$, s(a+b) = s(a)c(b) + s(b)c(a), $c(a+b) = c(a)c(b) s(a)s(b) \ \forall a, b \in \mathbb{R}$.
 - (c) Show that $p = \min\{x > 0 : c(x) = 0\}$ exists. Show that both s and c have period 4p (i.e., s(x + 4p) = s(x), $c(x + 4p) = c(x) \forall x \in \mathbb{R}$).
 - (d) Show that $s: [-p, p] \rightarrow [-1, 1]$ and $c: [0, 2p] \rightarrow [-1, 1]$ are invertible and calculate the derivatives of s^{-1} and c^{-1} .