51. Define $f(x)=6 x^{7}-14 x^{6}+21 x^{4}-14 x^{3}+1$ for $x \in I, f: I=[-10,10] \rightarrow \mathbb{R}$. Find $\min f(I)$ and $\max f(I)$.
52. Let $n \in \mathbb{N}$ and suppose $f, g:(a, b) \rightarrow \mathbb{R}$ both have n derivatives. Show

$$
(f \cdot g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x) \quad \text { for all } \quad x \in(a, b)
$$

53. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy
(a) $f^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}, f(0)=1$;
(b) $f^{\prime \prime}(x)=f(x)$ for all $x \in \mathbb{R}, f(0)=0, f^{\prime}(0)=1$;
(c) $f^{\prime \prime}(x)=f(x)$ for all $x \in \mathbb{R}, f(0)=1, f^{\prime}(0)=0$;
54. Consider the problem $f^{\prime \prime}(x)=-f(x)$ for all $x \in \mathbb{R}, f(0)=0, f^{\prime}(0)=1$.
(a) Show that the above problem has at most one solution. (Assume there is a solution and call it s, put $c=s^{\prime}$.)
(b) Show that s is odd (i.e., $s(-x)=-s(x) \forall x \in \mathbb{R}$), that c is even (i.e., $c(-x)=$ $c(x) \forall x \in \mathbb{R})$, and that $s^{2}(a)+c^{2}(a)=1,|s(a)| \leq 1,|c(a)| \leq 1, s(a+b)=s(a) c(b)+$ $s(b) c(a), c(a+b)=c(a) c(b)-s(a) s(b) \forall a, b \in \mathbb{R}$.
(c) Show that $p=\min \{x>0: c(x)=0\}$ exists. Show that both s and c have period $4 p(i . e ., s(x+4 p)=s(x), c(x+4 p)=c(x) \forall x \in \mathbb{R})$.
(d) Show that $s:[-p, p] \rightarrow[-1,1]$ and $c:[0,2 p] \rightarrow[-1,1]$ are invertible and calculate the derivatives of s^{-1} and c^{-1}.
