55. Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is called convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \text { whenever } x, y \in I \text { and } \lambda \in[0,1] .
$$

(a) Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is convex.
(b) Assume f is differentiable. Show that f is convex iff f^{\prime} is increasing.
(c) Show that $e: \mathbb{R} \rightarrow(0, \infty)$ and $-l:(0, \infty) \rightarrow \mathbb{R}$ are both convex.
56. Find the Taylor expansion of $f:(0,1] \rightarrow \mathbb{R}$ defined by $f(x)=l(1+x)$ at $x_{0}=0$.
57. Using only the definition of the Riemann integral, find $\int_{a}^{b} f(x) \mathrm{d} x$ with $0 \leq a<b$ in each of the following cases.
(a) $f(x)=x^{2}$;
(b) $f(x)=x^{3}$;
(c) $f(x)=3 x+2 x^{2}-5$.

