55. Let $I \subset \mathbb{R}$ be an interval. A function $f: I \to \mathbb{R}$ is called convex if

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ whenever $x, y \in I$ and $\lambda \in [0, 1]$.

- (a) Show that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is convex.
- (b) Assume f is differentiable. Show that f is convex iff f' is increasing.
- (c) Show that $e: \mathbb{R} \to (0, \infty)$ and $-l: (0, \infty) \to \mathbb{R}$ are both convex.
- 56. Find the Taylor expansion of $f:(0,1] \to \mathbb{R}$ defined by f(x) = l(1+x) at $x_0 = 0$.
- 57. Using only the definition of the Riemann integral, find $\int_a^b f(x) dx$ with $0 \le a < b$ in each of the following cases.
 - (a) $f(x) = x^2;$

(b)
$$f(x) = x^3$$

(c) $f(x) = 3x + 2x^2 - 5$.