4. Show that the zero and the one in a field are unique.
5. Prove Proposition 2.4 from the lecture notes.
6. Assume K satisfies the field axioms. Let $a, b, c, d \in K$. Prove:
(a) $(-a) \cdot(-b)=a \cdot b$;
(b) $(a-b) c=a c-b c$;
(c) $\frac{a}{b}: \frac{c}{d}=\frac{a d}{b c}$ provided $b, c, d \neq 0$.
7. Let $K=\{0,1\}$ and define addition " + " by $0+0=1+1=0,0+1=1+0=1$ and multiplication "." by $0 \cdot 0=0 \cdot 1=1 \cdot 0=0,1 \cdot 1=1$. Prove:
(a) K satisfies the field axioms;
(b) K does not satisfy the positivity axioms.
8. Prove the following rules in an ordered field:
(a) $a^{2}+b^{2} \geq 0$, and $a^{2}+b^{2}=0$ iff $a=b=0$;
(b) $0 \leq a<b$ and $0 \leq c<d$ imply $a c<b d$;
(c) $0 \leq a<b$ implies $0 \leq a^{2}<b^{2}$;
(d) $0<a<b$ implies $\frac{1}{a}>\frac{1}{b}>0$;
(e) $b, d>0$ implies $\left(\frac{a}{b}<\frac{c}{d}\right.$ iff $\left.a d<b c\right)$;
(f) $b, d>0$ and $\frac{a}{b}<\frac{c}{d}$ imply $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$;
(g) $0 \leq a \leq \varepsilon$ for all $\varepsilon>0$ implies $a=0$.
9. Suppose K is an ordered field. Let $\alpha \in K \cap(0,1)$ and $a<b$. Prove $a<\alpha a+(1-\alpha) b<b$.
