- 4. Show that the zero and the one in a field are unique.
- 5. Prove Proposition 2.4 from the lecture notes.
- 6. Assume K satisfies the field axioms. Let $a, b, c, d \in K$. Prove:
 - (a) $(-a) \cdot (-b) = a \cdot b;$
 - (b) (a-b)c = ac bc;
 - (c) $\frac{a}{b}: \frac{c}{d} = \frac{ad}{bc}$ provided $b, c, d \neq 0$.
- 7. Let $K = \{0, 1\}$ and define addition "+" by 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1 and multiplication "." by $0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0$, $1 \cdot 1 = 1$. Prove:
 - (a) K satisfies the field axioms;
 - (b) K does not satisfy the positivity axioms.
- 8. Prove the following rules in an ordered field:
 - (a) $a^2 + b^2 \ge 0$, and $a^2 + b^2 = 0$ iff a = b = 0;
 - (b) $0 \le a < b$ and $0 \le c < d$ imply ac < bd;
 - (c) $0 \le a < b$ implies $0 \le a^2 < b^2$;
 - (d) 0 < a < b implies $\frac{1}{a} > \frac{1}{b} > 0;$
 - (e) b, d > 0 implies $(\frac{a}{b} < \frac{c}{d} \text{ iff } ad < bc);$
 - (f) b, d > 0 and $\frac{a}{b} < \frac{c}{d}$ imply $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$;
 - (g) $0 \le a \le \varepsilon$ for all $\varepsilon > 0$ implies a = 0.
- 9. Suppose K is an ordered field. Let $\alpha \in K \cap (0,1)$ and a < b. Prove $a < \alpha a + (1-\alpha)b < b$.