40. Let $c \ge 1$. Discuss the continuity of f, where $f(x) = \begin{cases} \frac{6}{cx-1} & \text{if } x > 1\\ 2x^2+1 & \text{if } x \le 1. \end{cases}$

- 41. Prove that there exists a positive solution of the equation $\frac{1}{\sqrt{x+x^2}} = 2x x^2$.
- 42. Prove or disprove that f is continuous at x_0 , using the " ε/δ " criterion:
 - (a) $f(x) = x^3 + x$, $x_0 = 2$; (b) $f(x) = \frac{x^3 - 2}{x + 3}$, $x_0 = 1$; (c) f(x) = e(x), $x_0 = 1$ (see #39); (d) $f(x) = \begin{cases} x & \text{if } x < 0 \\ x + 2 & \text{if } x \ge 0 \end{cases}$, $x_0 = 0$.

43. Determine whether the following functions are uniformly continuous:

- (a) $f(x) = 6x + 7, f : \mathbb{R} \to \mathbb{R};$
- (b) $f(x) = \frac{1}{1+x^2}, f : \mathbb{R} \to \mathbb{R};$
- (c) $f(x) = x^3, f : \mathbb{R} \to \mathbb{R};$
- (d) $f(x) = \frac{x}{x-1}, f: [2,\infty) \to \mathbb{R}.$
- 44. A function $f : D \to \mathbb{R}$ is called a Lipschitz function if there exists some $c \ge 0$ such that $|f(u) - f(v)| \le c|u - v|$ for all $u, v \in D$. Find a Lipschitz function that is not uniformly continuous. Also find a uniformly continuous function that is not a Lipschitz function.