40. Let $c \geq 1$. Discuss the continuity of f, where $f(x)= \begin{cases}\frac{6}{c x-1} & \text { if } x>1 \\ 2 x^{2}+1 & \text { if } x \leq 1 .\end{cases}$
41. Prove that there exists a positive solution of the equation $\frac{1}{\sqrt{x+x^{2}}}=2 x-x^{2}$.
42. Prove or disprove that f is continuous at x_{0}, using the " ε / δ " criterion:
(a) $f(x)=x^{3}+x, x_{0}=2$;
(b) $f(x)=\frac{x^{3}-2}{x+3}, x_{0}=1$;
(c) $f(x)=e(x), x_{0}=1($ see \#39);
(d) $f(x)=\left\{\begin{array}{cc}x & \text { if } x<0 \\ x+2 & \text { if } x \geq 0\end{array}, x_{0}=0\right.$.
43. Determine whether the following functions are uniformly continuous:
(a) $f(x)=6 x+7, f: \mathbb{R} \rightarrow \mathbb{R}$;
(b) $f(x)=\frac{1}{1+x^{2}}, f: \mathbb{R} \rightarrow \mathbb{R}$;
(c) $f(x)=x^{3}, f: \mathbb{R} \rightarrow \mathbb{R}$;
(d) $f(x)=\frac{x}{x-1}, f:[2, \infty) \rightarrow \mathbb{R}$.
44. A function $f: D \rightarrow \mathbb{R}$ is called a Lipschitz function if there exists some $c \geq 0$ such that $|f(u)-f(v)| \leq c|u-v|$ for all $u, v \in D$. Find a Lipschitz function that is not uniformly continuous. Also find a uniformly continuous function that is not a Lipschitz function.
