Chapter 3

European Derivative Securities in Discrete Time

3.1 Risk-neutral Measures

Definition 3.1. Define the *discount factor* $\beta_k = (1 + r)^{-k}$. If there exists $\tilde{\mathbb{P}}$ on (Ω, \mathcal{F}) with $\tilde{\mathbb{P}} \sim \mathbb{P}$ such that $\{\beta_k S_k, \mathcal{F}_k\}$ is a martingale under $\tilde{\mathbb{P}}$, then we say that $\tilde{\mathbb{P}}$ is a *risk-neutral measure*. The expectation under $\tilde{\mathbb{P}}$ is denoted by $\tilde{\mathbb{E}}$.

Theorem 3.2. In the BAPM, let

$$\tilde{p} = \frac{(1+r) - d}{u - d}$$
 and $\tilde{q} = \frac{u - (1+r)}{u - d}$

and define a probability measure $\tilde{\mathbb{P}}$ on Ω by

$$\tilde{\mathbb{P}}(\omega) := \tilde{p}^{number of U in \,\omega} \tilde{q}^{number of D in \,\omega}.$$

Then $\tilde{\mathbb{P}}$ is a risk-neutral measure.

Remark 3.3. We may derive the "risk-neutral" probabilities \tilde{p} and \tilde{q} from Theorem 3.2 by "replicating an option with stocks".

Definition 3.4. A *portfolio process* φ is a process adapted to a filtration. For a given constant *initial wealth* X_0 and a portfolio process φ , we define the *wealth process* X recursively by

$$X_{k+1} = \varphi_k S_{k+1} + (1+r)(X_k - \varphi_k S_k), \quad 0 \le k \le N - 1.$$

Theorem 3.5. Under $\tilde{\mathbb{P}}$, the discounted wealth process βX is a martingale.

Corollary 3.6. The discounted wealth process satisfies

 $\tilde{\mathbb{E}}(\beta_n X_n) = X_0 \quad \text{for all} \quad 0 \le n \le N.$

Definition 3.7. A simple European derivative security (sEds) (or contingent claim) with expiration time $N \in \mathbb{N}$ is an \mathcal{F}_N -measurable random variable.

Definition 3.8. An sEds V_N is said to be *hedgeable* (or *attainable*) if there exists a constant X_0 and a portfolio process φ such that the wealth process X given in Definition 3.4 satisfies

$$X_N = V_N.$$

In this case, for $0 \le k \le N$, we call X_k the *APT value* (Arbitrage Pricing Theory) at time k of V_N .

Theorem 3.9. If an sEds V_N is hedgeable, then the APT value at time k of V_N is

$$V_k := \beta_k^{-1} \tilde{\mathbb{E}}(\beta_N V_N | \mathcal{F}_k), \quad 0 \le k \le N - 1,$$

in particular

$$V_0 = \tilde{\mathbb{E}}(\beta_N V_N).$$

Theorem 3.10. Let V_N be any sEds and define the value process V as in Theorem 3.9. Then βV is a martingale under $\tilde{\mathbb{P}}$.

Definition 3.11. A model in which any sEds is hedgeable is called *complete*. Otherwise, the model is called *incomplete*.

Theorem 3.12. The BAPM is complete.

Example 3.13. Consider a European call with strike price K = 5 and expiration time N = 2 in the BAPM with p = 1/3, q = 2/3, r = 1/4, $S_0 = 4$, u = 2, d = 1/2.

3.2 Change of Measure

Theorem 3.14. Assume $\mathbb{P} \sim \tilde{\mathbb{P}}$ and let Z be the Radon–Nikodým derivative of $\tilde{\mathbb{P}}$ with respect to \mathbb{P} . Then

(*i*)
$$\mathbb{P}(Z > 0) = 1$$
,

(*ii*)
$$\mathbb{E}(Z) = 1$$
;

(iii) $\tilde{\mathbb{E}}(Y) = \mathbb{E}(YZ)$ for any random variable Y;

(*iv*)
$$\mathbb{P}(1/Z > 0) = 1;$$

(v)
$$\tilde{\mathbb{E}}(1/Z) = 1;$$

(vi) $\mathbb{E}(Y) = \tilde{\mathbb{E}}(Y/Z)$ for any random variable Y.

Example 3.15. Consider the BAPM with p = 1/3, q = 2/3, $\tilde{p} = \tilde{q} = 1/2$, r = 1/4.

Theorem 3.16. Assume $\mathbb{P} \sim \tilde{\mathbb{P}}$ and let Z be the Radon–Nikodým derivative of $\tilde{\mathbb{P}}$ with respect to \mathbb{P} . Define $Z_n = \mathbb{E}(Z|\mathcal{F}_n)$. Then

- (i) $\{Z_n\}$ is a martingale;
- (ii) $\tilde{\mathbb{E}}(X) = \mathbb{E}(XZ_k)$ if X is \mathcal{F}_k -measurable;
- (iii) $\tilde{\mathbb{E}}(X|\mathcal{F}_j) = \frac{1}{Z_i}\mathbb{E}(XZ_k|\mathcal{F}_j), 0 \le j \le k$, if X is \mathcal{F}_k -measurable and bounded.

Definition 3.17. The state price density process is given by $\zeta_k = \beta_k Z_k$.

Theorem 3.18. For an sEds V_N , the value process V from Theorem 3.9 satisfies

- (i) $V_0 = \mathbb{E}(\zeta_N V_N);$
- (ii) $V_k = \zeta_k^{-1} \mathbb{E}(\zeta_N V_N | \mathcal{F}_k)$ for all $0 \le k \le N$;
- (iii) ζV is a martingale under \mathbb{P} .

Example 3.19. Revisit Example 3.13 using Theorem 3.18.

3.3 Fundamental Theorem of Asset Pricing

Definition 3.20. Let $X_0 = 0$. If there exists a portfolio process such that the wealth process satisfies

 $\mathbb{P}(X_N \ge 0) = 1$ and $\mathbb{P}(X_N > 0) > 0$,

then we say that an *arbitrage opportunity* exists. A market is called *arbitrage free* if there is no arbitrage opportunity.

Theorem 3.21 (No-arbitrage Theorem). A market is arbitrage free if and only if there exists a risk-neutral measure.

Theorem 3.22 (Completeness Theorem). An arbitrage-free market is complete if and only if there exists a unique risk-neutral measure.

Theorem 3.23 (Fundamental Theorem of Asset Pricing). In an arbitrage-free complete market, there exists a unique risk-neutral measure.