Chapter 5

Brownian Motion

5.1 Stochastic Processes in Continuous Time

Definition 5.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space.
(i) A filtration is a nondecreasing family $\mathbb{F}=\{F(t)\}_{t \geq 0}$ of sub- σ-algebras of \mathcal{F} :

$$
\mathcal{F}(s) \subset \mathcal{F}(t) \subset \mathcal{F} \quad \text { for all } \quad 0 \leq s<t<\infty
$$

(ii) A stochastic process is a family of random variables $X=\{X(t)\}_{t \geq 0}$ defined on the probability space.
(iii) The stochastic process X is adapted provided

$$
X(t) \quad \text { is } \mathcal{F}(t) \text {-measurable } \quad \text { for all } \quad t \geq 0
$$

Definition 5.2. Let $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space. A random variable $\tau: \Omega \rightarrow[0, \infty]$ is called a stopping time provided

$$
\{\omega \in \Omega: \tau(\omega) \leq t\} \in \mathcal{F}(t) \quad \text { for all } \quad t \geq 0
$$

The stopping time σ-algebra $\mathcal{F}(\tau)$ is then defined by

$$
\mathcal{F}(\tau)=\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}(t) \text { for all } t \geq 0\}
$$

Definition 5.3. Let $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space. Let X be a stochastic process that is adapted to \mathbb{F} such that $\mathbb{E}(|X(t)|)<\infty$ for all $t \geq 0$. Then X is called a
(i) martingale if

$$
\mathbb{E}(X(t) \mid \mathcal{F}(s))=X(s) \text { a.s. } \quad \text { for all } \quad 0 \leq s \leq t<\infty
$$

(ii) supermartingale if

$$
\mathbb{E}(X(t) \mid \mathcal{F}(s)) \leq X(s) \text { a.s. } \quad \text { for all } \quad 0 \leq s \leq t<\infty
$$

(iii) submartingale if

$$
\mathbb{E}(X(t) \mid \mathcal{F}(s)) \geq X(s) \text { a.s. } \quad \text { for all } \quad 0 \leq s \leq t<\infty
$$

5.2 Definition and Properties of Brownian Motion

Definition 5.4. A stochastic process W is called a (standard, one-dimensional) Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ provided
(i) $W(0)=0$ a.s.;
(ii) W has independent increments, i.e.,

$$
W(t+u)-W(t) \quad \text { is independent of } \quad \sigma(\{W(s): s \leq t\}) \quad \text { for } \quad u \geq 0
$$

(iii) W has stationary increments, i.e., $W(t+u)-W(t)$ depends only on u;
(iv) W has Gaussian increments, i.e.,

$$
W(t+u)-W(t) \quad \text { is normally distributed with mean } 0 \text { and variance } u \text {; }
$$

(v) W has continuous paths, i.e., $W(\cdot, \omega)$ is continuous for all $\omega \in \Omega$.

Theorem 5.5. Brownian motion satisfies

$$
\mathbb{E}(W(t))=0 \quad \text { and } \quad \mathbb{V}(W(t))=t
$$

Theorem 5.6. The covariance function for Brownian motion is given by

$$
\operatorname{Cov}(W(s), W(t))=s \wedge t
$$

Theorem 5.7. Brownian motion is a martingale.
Theorem 5.8. If W is Brownian motion, then the Doob decomposition of W^{2} is

$$
W^{2}(t)=W^{2}(0)+\left(W^{2}(t)-t\right)+t
$$

5.3 Linear and Quadratic Variation

Definition 5.9. Let $f, g:[0, t] \rightarrow \mathbb{R}$. Consider partitions \mathcal{P} of the form

$$
0=t_{0}<t_{1}<\ldots<t_{n}=t
$$

We define the
(i) variation of f by

$$
\bigvee_{t} f=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=0}^{n-1}\left|\Delta f\left(t_{j}\right)\right|
$$

(ii) quadratic variation of f by

$$
\langle f\rangle_{t}=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=0}^{n-1}\left|\Delta f\left(t_{j}\right)\right|^{2}
$$

(iii) covariation of f and g by

$$
\langle f, g\rangle_{t}=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=0}^{n-1} \Delta f\left(t_{j}\right) \Delta g\left(t_{j}\right) .
$$

Theorem 5.10. If $f:[0, t] \rightarrow \mathbb{R}$ has a continuous derivative, then

$$
\bigvee_{t} f=\int_{0}^{t}\left|f^{\prime}(u)\right| \mathrm{d} u \quad \text { and } \quad\langle f\rangle_{t}=0
$$

Theorem 5.11. If W is Brownian motion and $\operatorname{id}(t)=t$, then
(i) $\langle W, \mathrm{id}\rangle_{t}=0$;
(ii) $\langle\mathrm{id}\rangle_{t}=0$.

Theorem 5.12 (Lévy). If W is Brownian motion, then

$$
\langle W\rangle_{t}=t
$$

Remark 5.13. We capture the above results by writing

$$
\mathrm{d} W(t) \mathrm{d} t=0, \quad(\mathrm{~d} t)^{2}=0, \quad(\mathrm{~d} W(t))^{2}=\mathrm{d} t
$$

Theorem 5.14. The paths of Brownian motion are of unbounded variation.

5.4 Geometric Brownian Motion

Definition 5.15. We define geometric Brownian motion by

$$
S(t)=S(0) \exp \left\{\sigma W(t)+\left(\alpha-\frac{\sigma^{2}}{2}\right) t\right\}
$$

where $\alpha \in \mathbb{R}, \sigma>0$, and W is Brownian motion.
Theorem 5.16. Geometric Brownian motion (with $\alpha=0$) is a martingale.
Theorem 5.17. If S is geometric Brownian motion, then

$$
\langle\log \circ S\rangle_{t}=\sigma^{2} t
$$

5.5 First Passage Time

Definition 5.18. The first passage time to level x is defined by

$$
\tau_{x}=\min \{t \geq 0: W(t)=x\}
$$

Theorem 5.19. $\tau_{x}<\infty$ a.s. for all $x \in \mathbb{R}$.
Theorem 5.20. $\mathbb{E}\left(\exp \left\{-\alpha \tau_{x}\right\}\right)=\exp \{-|x| \sqrt{2 \alpha}\}$ for all $\alpha>0$.
Theorem 5.21. $\mathbb{E}\left(\tau_{x}\right)=\infty$ for all $x \in \mathbb{R} \backslash\{0\}$.

5.6 Existence of Brownian Motion

Theorem 5.22 (Wiener). Brownian motion exists.
Definition 5.23. We consider the Hilbert space $L^{2}([0,1])$, equipped with

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x, \quad\|f\|=\sqrt{\langle f, f\rangle} .
$$

A complete orthonormal system $\left\{\phi_{n}\right\}$ in $L^{2}([0,1])$ is abbreviated as a cons.
Theorem 5.24. If $\left\{\phi_{n}\right\}$ is a cons in $L^{2}([0,1])$, then

$$
\sum_{n=0}^{\infty} \int_{0}^{s} \phi_{n}(x) \mathrm{d} x \int_{0}^{t} \phi_{n}(x) \mathrm{d} x=s \wedge t
$$

Definition 5.25. Define $H(t)=1$ for $t \in[0,1 / 2), H(t)=-1$ for $t \in[1 / 2,1)$, and $H(t)=0$ otherwise. Put $H_{0}(t) \equiv 1$ and for $n \in \mathbb{N}$, write $n=2^{j}+k$ with unique $j \in \mathbb{N}_{0}$ and $0 \leq k \leq 2^{j}-1$ and define $H_{n}(t)=2^{j / 2} H\left(2^{j} t-k\right)$ for $t \in \mathbb{R}$. Then $\left\{H_{n}\right\}$ is called the Haar system.

Theorem 5.26. The Haar system is a cons in $L^{2}([0,1])$.
Definition 5.27. Define $s(t)=2 t$ for $t \in[0,1 / 2), s(t)=2(1-t)$ for $t \in[1 / 2,1]$, and $s(t)=0$ otherwise. Put $s_{0}(t)=t$ and for $n \in \mathbb{N}$, write $n=2^{j}+k$ with unique $j \in \mathbb{N}_{0}$ and $0 \leq k \leq 2^{j}-1$ and define $s_{n}(t)=s\left(2^{j} t-k\right)$ for $t \in \mathbb{R}$. Then $\left\{s_{n}\right\}$ is called the Schauder system.

Theorem 5.28. We have

$$
\int_{0}^{t} H_{n}(u) \mathrm{d} u=\ell_{n} s_{n}(t), \quad \text { where } \quad \ell_{n}=\frac{1}{2} \cdot 2^{-j / 2}
$$

Lemma 5.29. Let Z_{n} be independent standard normally distributed. Then there exists a random variable C such that $C<\infty$ a.s. and

$$
\left|Z_{n}\right| \leq C \sqrt{\log (n)} \quad \text { for all } \quad n \geq 2
$$

Theorem 5.30 (Lévy-Cieselski). Let Z_{n} be independent standard normally distributed. Define

$$
W(t)=\sum_{n=0}^{\infty} \ell_{n} Z_{n} s_{n}(t)
$$

Then the series converges uniformly and W is Brownian motion.

