
Chapter 5

Brownian Motion

5.1 Stochastic Processes in Continuous Time

Definition 5.1. Let (Ω,F ,P) be a complete probability space.

(i) A filtration is a nondecreasing family F = {F (t)}t≥0 of sub-σ-algebras of F :

F(s) ⊂ F(t) ⊂ F for all 0 ≤ s < t <∞.

(ii) A stochastic process is a family of random variables X = {X(t)}t≥0 defined
on the probability space.

(iii) The stochastic process X is adapted provided

X(t) is F(t)-measurable for all t ≥ 0.

Definition 5.2. Let (Ω,F,F ,P) be a filtered probability space. A random variable
τ : Ω→ [0,∞] is called a stopping time provided

{ω ∈ Ω : τ(ω) ≤ t} ∈ F(t) for all t ≥ 0.

The stopping time σ-algebra F(τ) is then defined by

F(τ) = {A ∈ F : A ∩ {τ ≤ t} ∈ F(t) for all t ≥ 0} .

Definition 5.3. Let (Ω,F,F ,P) be a filtered probability space. Let X be a stochastic
process that is adapted to F such that E(|X(t)|) <∞ for all t ≥ 0. Then X is called
a

(i) martingale if

E(X(t)|F(s)) = X(s) a.s. for all 0 ≤ s ≤ t <∞;

(ii) supermartingale if

E(X(t)|F(s)) ≤ X(s) a.s. for all 0 ≤ s ≤ t <∞;

(iii) submartingale if

E(X(t)|F(s)) ≥ X(s) a.s. for all 0 ≤ s ≤ t <∞.
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5.2 Definition and Properties of Brownian Motion

Definition 5.4. A stochastic processW is called a (standard, one-dimensional) Brow-
nian motion on some probability space (Ω,F ,P) provided

(i) W (0) = 0 a.s.;

(ii) W has independent increments, i.e.,

W (t+ u)−W (t) is independent of σ({W (s) : s ≤ t}) for u ≥ 0;

(iii) W has stationary increments, i.e., W (t+ u)−W (t) depends only on u;

(iv) W has Gaussian increments, i.e.,

W (t+ u)−W (t) is normally distributed with mean 0 and variance u;

(v) W has continuous paths, i.e., W (·, ω) is continuous for all ω ∈ Ω.

Theorem 5.5. Brownian motion satisfies

E(W (t)) = 0 and V(W (t)) = t.

Theorem 5.6. The covariance function for Brownian motion is given by

Cov(W (s),W (t)) = s ∧ t.

Theorem 5.7. Brownian motion is a martingale.

Theorem 5.8. If W is Brownian motion, then the Doob decomposition of W 2 is

W 2(t) =W 2(0) + (W 2(t)− t) + t.

5.3 Linear and Quadratic Variation

Definition 5.9. Let f, g : [0, t]→ R. Consider partitions P of the form

0 = t0 < t1 < . . . < tn = t.

We define the

(i) variation of f by ∨
t

f = lim
‖P‖→0

n−1∑
j=0

|∆f(tj)|;
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(ii) quadratic variation of f by

〈f〉t = lim
‖P‖→0

n−1∑
j=0

|∆f(tj)|2;

(iii) covariation of f and g by

〈f, g〉t = lim
‖P‖→0

n−1∑
j=0

∆f(tj)∆g(tj).

Theorem 5.10. If f : [0, t]→ R has a continuous derivative, then∨
t

f =

∫ t

0
|f ′(u)|du and 〈f〉t = 0.

Theorem 5.11. If W is Brownian motion and id(t) = t, then

(i) 〈W, id〉t = 0;

(ii) 〈id〉t = 0.

Theorem 5.12 (Lévy). If W is Brownian motion, then

〈W 〉t = t.

Remark 5.13. We capture the above results by writing

dW (t)dt = 0, (dt)2 = 0, (dW (t))2 = dt.

Theorem 5.14. The paths of Brownian motion are of unbounded variation.

5.4 Geometric Brownian Motion

Definition 5.15. We define geometric Brownian motion by

S(t) = S(0) exp
{
σW (t) +

(
α− σ2

2

)
t

}
,

where α ∈ R, σ > 0, and W is Brownian motion.

Theorem 5.16. Geometric Brownian motion (with α = 0) is a martingale.

Theorem 5.17. If S is geometric Brownian motion, then

〈log ◦S〉t = σ2t.
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5.5 First Passage Time

Definition 5.18. The first passage time to level x is defined by

τx = min {t ≥ 0 : W (t) = x} .

Theorem 5.19. τx <∞ a.s. for all x ∈ R.

Theorem 5.20. E(exp{−ατx}) = exp{−|x|
√

2α} for all α > 0.

Theorem 5.21. E(τx) =∞ for all x ∈ R \ {0}.

5.6 Existence of Brownian Motion

Theorem 5.22 (Wiener). Brownian motion exists.

Definition 5.23. We consider the Hilbert space L2([0, 1]), equipped with

〈f, g〉 =
∫ 1

0
f(x)g(x)dx, ‖f‖ =

√
〈f, f〉.

A complete orthonormal system {φn} in L2([0, 1]) is abbreviated as a cons.

Theorem 5.24. If {φn} is a cons in L2([0, 1]), then

∞∑
n=0

∫ s

0
φn(x)dx

∫ t

0
φn(x)dx = s ∧ t.

Definition 5.25. Define H(t) = 1 for t ∈ [0, 1/2), H(t) = −1 for t ∈ [1/2, 1), and
H(t) = 0 otherwise. Put H0(t) ≡ 1 and for n ∈ N, write n = 2j + k with unique
j ∈ N0 and 0 ≤ k ≤ 2j − 1 and define Hn(t) = 2j/2H(2jt − k) for t ∈ R. Then
{Hn} is called the Haar system.

Theorem 5.26. The Haar system is a cons in L2([0, 1]).

Definition 5.27. Define s(t) = 2t for t ∈ [0, 1/2), s(t) = 2(1 − t) for t ∈ [1/2, 1],
and s(t) = 0 otherwise. Put s0(t) = t and for n ∈ N, write n = 2j + k with unique
j ∈ N0 and 0 ≤ k ≤ 2j − 1 and define sn(t) = s(2jt − k) for t ∈ R. Then {sn} is
called the Schauder system.

Theorem 5.28. We have∫ t

0
Hn(u)du = `nsn(t), where `n =

1
2
· 2−j/2.
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Lemma 5.29. LetZn be independent standard normally distributed. Then there exists
a random variable C such that C <∞ a.s. and

|Zn| ≤ C
√

log(n) for all n ≥ 2.

Theorem 5.30 (Lévy–Cieselski). LetZn be independent standard normally distributed.
Define

W (t) =

∞∑
n=0

`nZnsn(t).

Then the series converges uniformly and W is Brownian motion.


