Chapter 5
Brownian Motion

5.1 Stochastic Processes in Continuous Time

Definition 5.1. Let (Q, F,P) be a complete probability space.
(i) A filtration is a nondecreasing family F = {F'(t) };>¢ of sub-o-algebras of F:

F(s)c F(t)c F forall 0<s<t<o0.

(ii) A stochastic process is a family of random variables X = {X(t)};>¢ defined
on the probability space.

(iii) The stochastic process X is adapted provided

X(t) is F(t)-measurable forall ¢>0.

Definition 5.2. Let (Q,F, F,P) be a filtered probability space. A random variable
7 :Q — [0, 00] is called a stopping time provided

{weQ: 7(w) <t} € F(t) forall ¢>0.
The stopping time o-algebra F(7) is then defined by
F(ry={AeF: An{r <t} e F(t) forallt > 0}.

Definition 5.3. Let (Q,F, F,P) be a filtered probability space. Let X be a stochastic
process that is adapted to IF such that E(| X (¢)|) < oo for all ¢ > 0. Then X is called
a

(1) martingale if

E(X(t)|F(s)) = X(s)as. forall 0<s<t<o0;
(ii) supermartingale if

E(X(t)|F(s)) < X(s)as. forall 0<s<t<oo;
(i) submartingale if

E(X(t)|F(s)) > X(s)as. forall 0<s<t<o0.
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5.2 Definition and Properties of Brownian Motion

Definition 5.4. A stochastic process W is called a (standard, one-dimensional) Brow-
nian motion on some probability space (Q, F,P) provided

(i W(0)=0as,;

(i) W has independent increments, i.e.,
W(t+u)—W(t) isindependentof o({W(s):s<t}) for u>0;

(iii) W has stationary increments, i.e., W (t 4+ u) — W (¢) depends only on u;

(iv) W has Gaussian increments, i.e.,
W(t+u) —W(t) isnormally distributed with mean 0 and variance u;

(v) W has continuous paths, i.e., W (-,w) is continuous for all w € Q.

Theorem 5.5. Brownian motion satisfies
E(W(@)=0 and V(W(t))=t.
Theorem 5.6. The covariance function for Brownian motion is given by
Cov(W (s), W (t)) = s At.

Theorem 5.7. Brownian motion is a martingale.

Theorem 5.8. If W is Brownian motion, then the Doob decomposition of W? is

W2(t) = W2(0) + (W(t) — t) + t.

5.3 Linear and Quadratic Variation
Definition 5.9. Let f, g : [0,¢] — R. Consider partitions P of the form
O=ty<ti<...<t, =t

We define the
(1) variation of f by

n—1

V= \lgﬁfgoz A7t

t
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(ii) quadratic variation of f by

= lim Af(t;
HP\HOZ|

(iii) covariation of f and g by
= lim Af(t;
r IPll— Z
Theorem 5.10. If f : [0,t] — R has a continuous derivative, then
t
Vo= [l ad g=o.
t

Theorem 5.11. If W is Brownian motion and id(t) = t, then
(ii) (id); = 0.

Theorem 5.12 (Lévy). If W is Brownian motion, then
(W) =t.
Remark 5.13. We capture the above results by writing
dW(t)dt =0, (dt)> =0, (dW(t))* = dt.

Theorem 5.14. The paths of Brownian motion are of unbounded variation.

5.4 Geometric Brownian Motion

Definition 5.15. We define geometric Brownian motion by

2
S(t) = S(0) exp {aW(t) + <a - "2> t} :
where o € R, 0 > 0, and W is Brownian motion.

Theorem 5.16. Geometric Brownian motion (with o = 0) is a martingale.

Theorem 5.17. If S is geometric Brownian motion, then

(logoS); = ot
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5.5 First Passage Time

Definition 5.18. The first passage time to level x is defined by
T, =min{t >0: W(t) =x}.

Theorem 5.19. 7, < co a.s. forall x € R.

Theorem 5.20. E(exp{—a7,}) = exp{—|z|v2a} for all a > 0.

Theorem 5.21. E(7,) = oo forall x € R\ {0}.

5.6 Existence of Brownian Motion
Theorem 5.22 (Wiener). Brownian motion exists.

Definition 5.23. We consider the Hilbert space L?([0, 1]), equipped with

1
(f.9) = /O f@g(@)dz, |1l = T

A complete orthonormal system {¢,, } in L>([0, 1]) is abbreviated as a cons.

Theorem 5.24. If {¢,,} is a cons in L*([0, 1)), then

nfj:o | et | on()dz = s A L.

Definition 5.25. Define H(t) = 1 fort € [0,1/2), H(t) = —1fort € [1/2,1), and
H(t) = 0 otherwise. Put Hy(t) = 1 and for n € N, write n = 27 4 k with unique
j €Npand 0 < k <27 — 1 and define H,(t) = 29/>?H (27t — k) for t € R. Then
{H,} is called the Haar system.

Theorem 5.26. The Haar system is a cons in L*(]0, 1]).

Definition 5.27. Define s(t) = 2t for ¢t € [0,1/2), s(t) =2(1 —t) fort € [1/2,1],
and s(t) = 0 otherwise. Put so(t) = t and for n € N, write n = 27 4 k with unique
j € Npand 0 < k <2/ — 1 and define s,,(t) = s(27t — k) for t € R. Then {s,} is
called the Schauder system.

Theorem 5.28. We have

t
1 ,

/ H,(v)du = lps,(t), where {, = 3 27912,

0
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Lemma 5.29. Let Z,, be independent standard normally distributed. Then there exists
a random variable C' such that C < oo a.s. and

|Z,| < Cy/log(n) forall n >2.

Theorem 5.30 (Lévy—Cieselski). Let Z,, be independent standard normally distributed.
Define

W(t) = iEnZnsn(t).
n=0

Then the series converges uniformly and W is Brownian motion.



