12. In the BAPM, find $\mathbb{E}\left(S_{3} \mid S_{2}\right)$.
13. In the BAPM, find $\mathbb{E}\left(S_{1} \mid S_{2}\right)$.
14. In the TAPM, find $\mathbb{E}\left(S_{2} \mid S_{1}\right)$.
15. In the TAPM, find $\mathbb{E}\left(S_{1} \mid S_{2}\right)$.
16. Prove Theorem 2.4 (iii) from the Lecture Notes.
17. For the BAPM, show directly that the following properties from Theorem 2.4 hold:
(a) Linearity with $a_{1}=a_{2}=1, X_{1}=S_{2}, X_{2}=S_{3}, \mathcal{G}=\mathcal{F}_{1}$.
(b) Taking out what is known with $X Z=S_{1} S_{2}, \mathcal{G}=\mathcal{F}_{1}$.
(c) Tower property with $X=S_{3}, \mathcal{H}=\mathcal{F}_{1}, \mathcal{G}=\mathcal{F}_{2}$.
(d) Independence with $X=S_{2} / S_{1}, \mathcal{G}=\mathcal{F}_{1}$.
18. For the TAPM, is S a martingale, submartingale, or supermartingale?
19. Show that a convex function of a martingale is a submartingale.
20. Let M be a martingale and φ an adapted process. Define the discretetime stochastic integral I by $I_{0}=0$ and

$$
I_{n}=\sum_{j=0}^{n-1} \varphi_{j}\left(M_{j+1}-M_{j}\right), \quad n \in \mathbb{N} .
$$

Show that I is a martingale.
21. Toss a coin repeatedly. Let $X_{j}=1$ if the j th toss is a head and $X_{j}=-1$ if the j th toss is a tail. Define $M_{0}=0$ and

$$
M_{n}=\sum_{j=1}^{n} X_{j}, \quad n \in \mathbb{N} .
$$

(a) Show that M is a martingale.
(b) Let $\sigma>0$, define

$$
N_{n}=e^{\sigma M_{n}}\left(\frac{2}{e^{\sigma}+e^{-\sigma}}\right)^{n}, \quad n \in \mathbb{N}_{0}
$$

and show that N is a martingale.

