29. Suppose X is adapted and let B be a Borel set. Show that

 $\tau = \inf\{n \in \mathbb{N}_0 : X_n \in B\}$ is a stopping time.

- 30. Suppose τ and σ are stopping times. Show that
 - (a) $\sigma \wedge \tau$ and $\sigma \vee \tau$ are stopping times,
 - (b) $\mathcal{F}_{\sigma\wedge\tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.
- 31. Prove Lemma 4.7 from the Lecture Notes.
- 32. Prove Doob's STP if X is a supermartingale.
- 33. Prove Doob's OST if X is a supermartingale.
- 34. Consider an American put with expiration time 2 and strike price 5 in the BAPM with N = 2, $\tilde{p} = \tilde{q} = 1/2$, r = 1/4, u = 2, d = 1/2, $S_0 = 4$. Let Y_k be the maximum of zero and the payoff if the put is exercised at k. Let X be the discounted Y process.
 - (a) Is τ defined by τ(UU) = τ(UD) = 2, τ(DU) = τ(DD) = 1 a stopping time?
 If so, find F_τ, X_τ, X^τ, and Ẽ(X_τ).
 - (b) Is ρ defined by $\rho(DD) = 2$, $\rho(UU) = \rho(UD) = \rho(DU) = 1$ a stopping time? If so, find \mathcal{F}_{ρ} , X_{ρ} , X^{ρ} , and $\tilde{\mathbb{E}}(X_{\rho})$.