40. Show that the mean of a martingale, a supermartingale, and a submartingale is constant, nonincreasing, and nondecreasing, respectively.
41. Let W be Brownian motion. Find
(a) $\mathbb{P}(W(2) \leq 0)$;
(b) $\mathbb{P}(W(0) \leq 0$ and $W(1) \leq 0$ and $W(2) \leq 0)$.
42. Let W be Brownian motion. Find the distribution of
(a) $\sum_{n=1}^{4} W(n)$;
(b) $\sum_{n=1}^{4} W(1 / n)$;
(c) $\int_{0}^{1} W(t) \mathrm{d} t$.
43. Let W be Brownian motion. Find $\mathbb{P}\left(\int_{0}^{1} W(t) \mathrm{d} t>2 / \sqrt{3}\right)$.
44. Show that the normal kurtosis is three, i.e., the fourth moment of a normal random variable with zero mean is three times its variance squared.
45. Let $W(t), t \geq 0$, be Brownian motion. Define the Brownian bridge by

$$
X(t)=W(t)-t W(1), \quad 0 \leq t \leq 1
$$

Calculate

$$
\text { (a) } \mathbb{E}(X(t)) ; \quad \text { (b) } \mathbb{C o v}(X(s), X(t))
$$

46. Calculate the third variation of Brownian motion.
47. Let S be geometric Brownian motion with parameters α and σ and let $K>0$.

Show that, for $T>0$,

$$
\mathbb{E}\left(e^{-\alpha T}(S(T)-K)^{+}\right)=S(0) N\left(d_{+}(T, S(0))\right)-K e^{-\alpha T} N\left(d_{-}(T, S(0))\right)
$$

where N is the cumulative standard normal distribution function and

$$
d_{ \pm}(T, S(0))=\frac{1}{\sigma \sqrt{T}}\left\{\log \frac{S(0)}{K}+\left(\alpha \pm \frac{\sigma^{2}}{2}\right) T\right\}
$$

