
Available online at www.sciencedirect.com

(
s
t
o
m
H
©
r

K

d
e
[
s
t
a
n

a

ScienceDirect

Mathematics and Computers in Simulation 215 (2024) 543–559
www.elsevier.com/locate/matcom

Original articles

A high-order multi-resolution wavelet method for nonlinear systems
of differential equations

Muhammad Ahsana,b,∗, Weidong Leib, Martin Bohnerc, Amir Ali Khana

a Department of Mathematics, University of Swabi, Khyber Pakhtunkhwa 23200, Pakistan
b School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China

c Department of Mathematics and Statistics, Missouri S&T, Rolla, MO 65409-0020, USA

Received 8 December 2022; received in revised form 15 July 2023; accepted 21 August 2023
Available online 26 August 2023

Abstract

In this article, the applications of the new Haar wavelet collocation methods called as Haar wavelet collocation method
HWCM) and higher-order Haar wavelet collocation method (H-HWCM) are developed for the solution of linear and nonlinear
ystems of ordinary differential equations. The proposed H-HWCM is compared with a variety of other methods including
he well-known HWCM. The quasi-linearization technique is introduced in the nonlinear cases. The stability and convergence
f both techniques is studied in detail, which are the important parts to analyze the proposed methods. The efficiency of the
ethods is illustrated with certain numerical examples, but the H-HWCM is more accurate with faster convergence than the
WCM and other methods reported in the literature.
2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.
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1. Introduction

Differential equations are widely recognized as the foundation for physical systems. In engineering, population
ynamics, applied mathematics, physics, economics, astronomy, and other related subjects, ordinary differential
quations (ODEs) and partial differential equations (PDEs) are suited to describe a wide range of phenomena
17,23,39,42,43,47]. To find analytical solutions of nonlinear differential equations is challenging in most circum-
tances due to the existence of nonlinear terms, and therefore an alternate procedure is compulsory to deal with
hem. To solve alternatively these nonlinear equations, different numerical methods have been widely used such
s the predictor–corrector technique [14], Runge–Kutta method [51], and a finite element approach [45]. These
umerical approaches demand that the domain be discretized into a finite number of points.

The growth or decay of bacteria, half-life of a radioactive substance, age of a fossils, Newton’s law of cooling
nd warming, mixture of two salt solutions, and different types of series circuits can be represented by ODEs [53].
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Similarly, systems of ODEs are also employed in a variety of scientific and engineering sectors. Observing the
mixing problem involving two tanks, electrical networks, and mass–spring systems can be represented by a system
of ODEs [25]. In the same manner, population models of different spaces, the logistic equation, rate of chemical
reactions, and competition models like Lotka–Volterra predator–prey models are better explained by nonlinear
systems of ODEs [53].

Systems of ODEs have also been solved using proper numerical techniques. The differential transform approx-
mation [26], Haar wavelets collocation methods [10,21], Adomian decomposition method [12], artificial neural
etworks technique [27], and Legendre neural network method [37] are some of the available techniques to solve
inear and nonlinear system of ODEs.

Among wavelets, the simplest ones are Haar wavelets, which are described by piecewise continuous functions.
aar wavelets are observed as extremely effective tools to calculate solutions of ODEs and PDEs, and they have
een applied to solve a variety of problems in biology, physics, fluid dynamics, and chemical reactions. Chen
nd Hsiao were the first to develop the Haar wavelet approach and executed it on differential equations to get
he required solution [13,20]. Hariharan also developed the Haar wavelet technique for solving the Klein–Gordon
roblem and the sine–Gordon equation [18]. He also presented an accurate and economical Haar wavelet technique
o solve the well-known Cahn–Allen problem [19] and Fisher’s equation [19]. Aziz et al. [11] presented a new
umerical technique for solving nonlinear integral-type equations with the help of Haar wavelets. Ahsan et al.
urther extended the Haar wavelet approach to solve linear and nonlinear direct problems [1,9,30,31] and inverse
roblems [4,6,7,48]. Apart from these, several other researchers have exploited Haar wavelets as a problem-solving
ool in their respective fields of interest [8,22,28,34,35]. The most sophisticated use of Haar wavelets is demonstrated
n [41] for the identification of software piracy levels. Apart from the wavelet collocations methods, other mesh
ased and meshless methods have also been developed to solve linear and nonlinear ODEs, PDEs and fractional
ifferential equations [2,15,16,46].

All of the previous studies have followed the Chen and Hsiao approach [13], where the highest order derivatives
resent in the model equation (such as dn y

dxn ) is approximated by Haar series. In 2018, Majak et al. developed a
igh-order Haar wavelet collocation method (H-HWCM) [32] by modifying the Chen and Hsiao approach [13] to
olve ODEs. According to H-HWCM the dn+2s y

dxn+2s (where s = 1, 2, . . . ) is approximated by Haar series instead of dn y
dxn

term. The H-HWCM is recently applied to solve ODEs [3,33], nonlinear evolution equations [44], and nonlinear
PDEs [52]. The H-HWCM is also used to study the static response and buckling loads of multilayered composite
beams [49] and vibration analysis of different types of beams [36,38,40]. Furthermore, the H-HWCM is recently
implemented to solve nonlinear problems with two point-integral boundary conditions [5].

In this paper, we extend the H-HWCM to solve the system of nonlinear ordinary differential equations
(NLODEs)

dy1

dx
= F1(x, y1, y2, . . . , yn),

dy2

dx
= F2(x, y1, y2, . . . , yn),

...

dyn

dx
= Fn(x, y1, y2, . . . , yn),

(1)

ubject to the set of initial conditions

{y1(0), y2(0), . . . , yn(0)} = {α1, α2, . . . , αn}, (2)

here Fp and αp, p = 1, 2, . . . , n, are nonlinear functions and real constants, respectively. This type of stiff
roblems has applications in nonlinear mechanics, chemical engineering, biochemistry, etc. Unfortunately, analytical
olutions to this type of stiff systems do not exist, so that numerical solutions are an alternate option to deal with
hem.
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In this article, the study presented in [3,32] has been extended to solve NLODEs. The iterative quasi-linearization
echnique is used to linearize NLODE and H-HWCM, and it is then implemented to get the numerical solution.

. Haar functions

A generalized representation of the Haar functions is defined as

hi (x) =

⎧⎪⎨⎪⎩
1 for x ∈ [β1(i), β2(i)),
−1 for x ∈ [β2(i), β3(i)),
0 elsewhere,

(3)

here⎧⎨⎩β1(i) = A +
(B − A)k

m
, β2(i) = A +

(B − A)(k + 0.5)
m

, β3(i) = A +
(B − A)(k + 1)

m
,

i = m + k + 1, k = 0, 1, . . . , m − 1, m = 2 j , j ∈ N0.

(4)

The component of the wavelet is represented by m, whereas the translation parameter is described by k. It is to be
noticed that i ≥ 2, so we define the mother wavelet by

h1(x) =

{
1 for x ∈ [A, B],
0 elsewhere.

The notation pi,n(x) indicates the nth-order integrals of the Haar functions, where i ∈ N, and can be obtained by
nalytical calculation to keep the derivations simple, namely

pi,n(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for x < β1(i),
1
n!

(
x − β1(i)

)n
for x ∈ [β1(i), β2(i)),

1
n!

(
(x − β1(i))n

− 2(x − β2(i))n
)

for x ∈ [β2(i), β3(i)),
1
n!

(
(x − β1(i))n

− 2(x − β2(i))n
+ (x − β3(i))n

)
for x ≥ β3(i),

nd

p1,n(x) =
(x − A)n

n!
.

. Numerical methods

We will approximate the solution of a system of differential equations by two methods.

.1. Haar wavelet collocation method (HWCM)

Several Haar wavelet collocation methods (HWCMs) are used for solving a system of differential equations
ollowing the Chen and Hsiao method [13]. In this method, we approximate the derivative of the highest-order in
he ODE by Haar series. For example, if we solve the system (1), then we approximate

dy1

dx
=

2M∑
i=1

a(1)
i hi (x),

dy2

dx
=

2M∑
i=1

a(2)
i hi (x),

...

dyn

dx
=

2M∑
a(n)

i hi (x),

(5)
i=1
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where a(p)
i , p = 1, 2, . . . , n, are the unknown Haar wavelet coefficients. The approximate solutions y1, y2, . . . , yn ,

an be obtained by integrating (5), such as

y1(x) =

2M∑
i=1

a(1)
i pi,1(x) + k1,

y2(x) =

2M∑
i=1

a(2)
i pi,1(x) + k2,

...

yn(x) =

2M∑
i=1

a(n)
i pi,1(x) + kn,

(6)

here k1, k2. . . . , kn are the constants of integration. The nonlinear system of Eqs. (1) can be linearized using the
ollowing auxiliary result.

emma 1. Let ℓ1 and ℓ2 be two C1 functions defined on [A, B]. For p∗
= 1, 2, . . . , P∗

ℓ
p∗

+1
1 (x)ℓp∗

+1
2 (x) = ℓ

p∗
+1

1 (x)ℓp∗

2 (x) + ℓ
p∗

1 (x)ℓp∗
+1

2 (x) − ℓ
p∗

1 (x)ℓp∗

2 (x) + O(∆x)2,

here ∆x =
B−A
2M , and p∗ represents the iteration number.

roof. See [4] and the references therein. □

After linearization of (1), (5) and (6) are utilized with the collocation points

x j = a +
(b − a)( j − 0.5)

2M
.

This process converts the system of ODEs into 2M algebraic equations with 2M + n unknowns. The other n
equations can be achieved by introducing the given n initial conditions (2) in (6). Hence, solving the 2M + n
algebraic equations for 2M + n unknowns and then putting these Haar coefficients along with integration constants
back in the expression y1(x), y2(x), . . . , yn(x), the required approximate solution can be obtained. The numerical
olution at any point xk∗ ∈ [A, B] can also be acquired by the interpolation formula

y1(xk∗ ) ≈

2M∑
i=1

a(1)
i pi,1(xk∗ ) + k1,

y2(xk∗ ) ≈

2M∑
i=1

a(2)
i pi,1(xk∗ ) + k2,

...

yn(xk∗ ) ≈

2M∑
i=1

a(n)
i pi,1(xk∗ ) + kn.

(7)

.2. H-HWCM

Fast convergent wavelet methods are used for solving differential equations following H-HWCM [32]. In H-
WCM, instead of approximating the highest-order derivative present in the model equation, we start with the

pproximation

d(1+2s) y1

dx (1+2s) =

2M∑
i=1

a(1)
i hi (x),

d(1+2s) y2

dx (1+2s) =

2M∑
a(2)

i hi (x),

i=1
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...

d(1+2s) yn

dx (1+2s) =

2M∑
i=1

a(n)
i hi (x),

(8)

here s = 1, 2, . . .. Integrating (8) 1 + 2s times, we get

y1(x) =

2M∑
i=1

a(1)
i pi,1+2s(x) +

2s∑
r=0

c(1)
r

xr

r !
,

y2(x) =

2M∑
i=1

a(2)
i pi,1+2s(x) +

2s∑
r=0

c(2)
r

xr

r !
,

...

yn(x) =

2M∑
i=1

a(n)
i pi,1+2s(x) +

2s∑
r=0

c(n)
r

xr

r !
,

(9)

where c(p)
0 , c(p)

1 , . . . , c(p)
2s , p = 1, 2, . . . , n, are integration constants. Following Lemma 1, we can linearize (1). Then

using (8) and (9) with the collocation points x j = a +
(b−a)( j−0.5)

2M in the linearized equation, we get 2M algebraic
equations in 2M + n(1 + 2s) unknowns. The n equations (for c(p)

0 , p = 1, 2, . . . , n) can be obtained by introducing
the given n initial conditions in (9), while the remaining n × 2s equations (for c(p)

1 , . . . , c(p)
2s , p = 1, 2, . . . , n)

an be obtained by introducing the nodal points other than the collocation points into the linearized Haar wavelet
xpression of the (1), namely

xl = a +
l

2M
, xℓ = b −

ℓ

2M
, l = ℓ = 0, 1, . . . , s − 1. (10)

fter finding all the Haar coefficients along with integration constants and then putting these values back in the
xpression in (9) (y1(x), y2(x), . . . , yn(x)), the required approximate solution can be obtained. The numerical
olution at any point xk∗ ∈ [A, B] can also be acquired by the interpolation formula

y1(xk∗ ) ≈

2M∑
i=1

a(1)
i pi,1+2s(xk∗ ) +

2s∑
r=0

c(1)
r

xr
k∗

r !
,

y2(xk∗ ) ≈

2M∑
i=1

a(2)
i pi,1+2s(xk∗ ) +

2s∑
r=0

c(2)
r

xr
k∗

r !
,

...

yn(xk∗ ) ≈

2M∑
i=1

a(n)
i pi,1+2s(xk∗ ) +

2s∑
r=0

c(n)
r

xr
k∗

r !
.

(11)

. Convergence analysis

In this section, we discuss the two theorems associated with the convergence of both Haar wavelet based methods.

heorem 1 (HWCM). Suppose that dk∗

yp/dxk∗

, k∗
= 1, 2 and p = 1, 2, . . . , n, exist and are bounded in [A, B].

or any M = 2J , J = 0, 1, 2, . . . , if yM
p is the solution based on HWCM and yp is the exact solution for each p,

hen ∥yp − yM
p ∥∞ ≤ O

( 1
M

)2 as J → ∞.

roof. See [31,34]. □
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Theorem 2 (H-HWCM). Suppose that dk∗

yp/dxk∗

, k∗
= 1, 2, . . . , 2(s+1) and p = 1, 2, . . . , n exist and are bounded

in [A, B]. For any M = 2J , J = 0, 1, 2, . . . , and s = 1, 2, 3, . . . , if yM
p is the solution based on H-HWCM and yp

s the exact solution for each p, then ∥yp − yM
p ∥∞ ≤ O

( 1
M

)P as J → ∞, where P = 2 + 2s.

Proof. First, considering p = 1, we have

EM := ∥y1 − yM
1 ∥∞ = max

a≤x≤b

⏐⏐⏐⏐⏐
∞∑

i=2M+1

a(1)
i pi,1+2s(x)

⏐⏐⏐⏐⏐ .
s it is assumed that dk+2s y1/dxk+2s is bounded, we have

EM ≤ β

∞∑
i=2M+1

b − a
2 j+1 max

a≤x≤b
|pi,1+2s(x)|, (12)

where β > 0. It has been proved in [34] that maxa≤x≤b pi,2(x) =

(
b−a
2 j+1

)2
, and following the same steps as in [34],

e can easily obtain (recalling the relationship between i , k and j given in (4))

max
a≤x≤b

pi,1+2s(x) ≤
8
3

1
(s1!)2

(
b − a
2 j+1

)2+2s

, for 1 + 2s > 2, (13)

here s1 = ⌊
1+2s

2 ⌋. Using (13) in (12), we have

EM ≤ β

∞∑
j=J+1

2 j
−1∑

k=0

(
b − a
2 j+1

) (
8

3(s1!)2

) (
b − a
2 j+1

)2+2s

= β

(
8

3(s1!)2

) ∞∑
j=J+1

2 j
−1∑

k=0

(
b − a
2 j+1

)3+2s

= β

(
8(b − a)(3+2s)

3(s1!)2

) ∞∑
j=J+1

2 j
−1∑

k=0

(
1

2 j+1

)3+2s

=
β

2

(
8(b − a)(3+2s)

3(s1!)2

) ∞∑
j=J+1

(
1

2 j+1

)2+2s

=
β

2(3+2s)

(
8(b − a)(3+2s)

3(s1!)2

) ∞∑
j=J+1

(
1
2 j

)2+2s

=
β

2(3+2s)

(
8(b − a)(3+2s)

3(s1!)2

) (
1

2J+1

)2+2s (
22+2s

22+2s − 1

)
=

8β(b − a)(3+2s)

6
(
2(2+2s) − 1

)(
(s1!)2

) (
1

2J+1

)2+2s

= O
(

1
M

)2+2s

.

The same process can be repeated for p = 2, 3, . . . , n. The proof is completed. □

5. Stability analysis

To study the stability of both methods, it is essential to look at the condition number of the algebraic equations,
which should be bounded [50]. For this purpose, the system of algebraic equations obtained from both Haar wavelet
methods can be written as

HX = B, (14)

where H is a matrix based on Haar functions, X is the unknown vector based on Haar series, and B is the right-side
vector. To check the stability numerically, we use the following definition.
548
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Table 1
The condition numbers in different cases.

J Method Test Problem 1 Test Problem 2 Test Problem 3 size of H

3 HWCM 1.6888E+04 6.3588E+02 7.5064E+01 34 × 34
H-HWCM 7.7565E+07 7.9103E+04 1.5818E+04 38 × 38

4 HWCM 3.1287E+04 8.9892E+02 1.0633E+02 66 × 66
H-HWCM 2.0140E+08 4.3105E+05 8.3301E+04 70 × 70

5 HWCM 5.3111E+04 1.2725E+03 1.5068E+02 130 × 130
H-HWCM 4.2171E+08 2.3849E+06 4.5558E+05 134 × 134

6 HWCM 8.3716e+04 1.8012e+03 2.1338e+02 130 × 130
H-HWCM 7.3845e+08 1.3334e+07 2.5344e+06 134 × 134

7 HWCM 1.2604e+05 2.5484e+03 3.0198e+02 258 × 258
H-HWCM 1.2847e+09 7.4982e+07 1.4217e+07 262 × 262

8 HWCM 1.8447e+05 3.6050e+03 4.2722e+02 514 × 514
H-HWCM 5.3949e+09 4.2289e+08 8.0089e+07 518 × 518

Definition 1 (See [29]). Suppose a numerical method for a system of ODEs gives a sequence of matrix equations
f the form HX = B. We say that the method is stable if H−1 exists for all sufficiently large M (for M > M0,
ay) and if there is a constant C , independent of M , such that

∥H−1
∥ ≤ C for all M > M0.

The eigenvalues of H−1 are simply the inverses of the eigenvalues of H (say λ), so we need to compute λ

nstead of the eigenvalues of H−1, and they should be bounded away from zero as M → ∞. So according to
efinition 1, we need to compute the minimum value of |λ| for linear and nonlinear Test Problems 1–3, which

obviously represents ρ(H−1) (see Fig. 1). We can also see from Fig. 1 that increasing M does not affect ∥H−1
∥2

to increase quickly. For linear and nonlinear ODEs, we also compare the condition number of H in Table 1, which
shows that the algebraic equations of both approaches are well conditioned. Hence, both methods are numerically
stable.

6. Summary of the algorithms

The algorithms of the HWCM and H-HWCM are presented as follows:

Input: N = 2M , M = 2J , J ∈ N ∪ {0}, initial conditions.
Step 1: Compute hi (x), pi,1(x) and pi,2(x).

or n = 1, . . . , P , where P is the maximum number of iteration.
Step 2: Construct H and B for Eq. (14) according to Section 3.1 or Section 3.2.

tep 3: Calculate the unknown Haar wavelet coefficients and integration constants using

X = H−1 B.

Step 4: Construct an approximate solution from (6) or (9).
Output: If maximum of absolute error is acceptable, then the for loop will be end; otherwise go to Step 2.

7. Numerical results

We implement both proposed methods to different types of problems to demonstrate the efficiency and
applicability of our study. We have also compared the results with existing techniques in the literature. The numerical
results are obtained by “MATLAB R2009b” software. The CPU time unit is considered in seconds and all the
simulations are carried out on DELL PC Laptop with an Intel(R) Core(TM)i3-3110M CPU 2.40 GHz, 2 GB RAM.
549
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Fig. 1. ρ(H−1) and ∥H−1
∥2.

e evaluated the effectiveness and precision of both approaches using the experimental convergence order and the
L∞ error, which are given as

C R(M) = log
(
L∞(M/2)/L∞(M)

)
/log(2),

L∞(yp) = max (|yp(x) − yM
p (x)|), p = 1, 2, . . . , n.
a≤x≤b
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Table 2
Numerical results obtained by H-HWCM for Test Problem 1 (the experimental rate of convergence is in line with Theorem 2).

J L∞(y1) L∞(y2) CR(y1) CR(y2) CPU time

4 5.6470E−02 5.6470E−02 – – 0.1135
5 6.6887E−03 6.6887E−03 3.0777 3.0777 0.2918
6 5.3416e−04 5.3416e−04 3.6464 3.6464 0.8539
7 4.2096e−05 4.2096e−05 3.6655 3.6655 3.4826
8 2.9462e−06 2.9462e−06 3.8368 3.8368 13.2732

Test Problem 1. Taking the linear stiff system

dy1(x)
dx

= −y1(x) + 95y2(x),

dy2(x)
dx

= −y1(x) − 97y2(x),
(15)

ith given initial conditions

y1(0) = 1, y2(0) = 1.

he exact solution is

y1(x) =
95e−2x

− 48e−96x

47
, y2(x) =

48e−96x
− e−2x

47
.

This problem has been solved by H-HWCM, and the results are compared with three different methods, namely
the single-term Haar wavelet method (STHM), the classical Runge–Kutta fourth-order method (CRK), and the
nonuniform Haar wavelet method (see Fig. 2), where H-HWCM and the nonuniform Haar wavelet methods are
better than STHM and CRK method. In case of stiff ODEs, the nonuniform Haar wavelet method is more accurate
due to considering variable stepsize (it is given in [10]), but the current study, i.e., the modification of HWCM and
called as H-HWCM, is more accurate than [10]. The numerical solution of the given problem shows that H-HWCM
having constant stepsize gives much more accurate results than the nonuniform Haar wavelet method and is also
time efficient. The maximum error, experimental order of convergence (which is in line with Theorem 2), and the
CPU time are given in Table 2 to show the performance and efficiency of the proposed H-HWCM. The comparison
of numerical and exact solutions along with pointwise error obtained by H-HWCM are presented in Fig. 3.

est Problem 2. Consider the nonlinear system of differential equations with variable coefficients

dy1(x)
dx

= 2(y2(x))2,

dy2(x)
dx

= e−x y1(x),

dy3(x)
dx

= y2(x) + y3(x).

(16)

he exact solution is

y1(x) = e2x , y2(x) = ex , y3(x) = xex .

he initial conditions can be obtained from the exact solution. In Table 3, different methods are compared, and
he pointwise error of H-HWCM is very small compared to the Adomian decomposition method (ADM) [12] and
WCM. In Table 4, the maximum error is calculated for different values of J using HWCM and H-HWCM, and

t can be concluded that by increasing the values of J , the error of H-HWCM is decreasing faster than the error
f HWCM, where both methods are time efficient (see the CPU time in Table 4). Comparison of the numerical
olutions (H-HWCM) with the exact solution is also shown in Figs. 4–5.
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Fig. 2. Comparison of numerical solution with exact solution for Test Problem 1.

Fig. 3. Solutions and point wise error obtained by H-HWCM for Test Problem 1 at J = 5.
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Table 3
Comparison of absolute error at various points obtained by different methods for Test Problem 2.

x ADM [12] HWCM (J = 5) H-HWCM (s = 1, J = 5)

y1 y2 y3 y1 y2 y3 y1 y2 y3

0.1 1.653E−5 2.932E−6 0 1.504E−4 4.446E−5 7.557E−5 3.386E−9 4.518E−10 8.199E−10
0.2 5.337E−5 1.121E−5 0 1.372E−4 4.999E−5 7.031E−5 2.947E−9 7.590E−10 7.410E−10
0.3 5.974E−4 1.140E−4 5.116E−5 1.891E−4 6.956E−5 9.340E−5 4.650E−9 1.265E−9 1.139E−9
0.4 3.131E−3 5.729E−4 2.732E−4 3.445E−4 1.071E−4 1.563E−4 9.653E−9 2.017E−9 2.167E−9
0.5 1.134E−2 1.959E−3 9.885E−4 1.417E−4 8.808E−5 7.653E−5 7.177E−9 2.584E−9 1.851E−9
0.6 3.206E−2 5.249E−3 2.807E−3 6.152E−4 1.713E−4 2.475E−4 1.842E−8 3.811E−9 3.861E−9
0.7 7.666E−2 1.190E−2 6.760E−3 6.591E−4 1.932E−4 2.548E−4 1.978E−8 4.861E−9 4.293E−9
0.8 1.625E−1 2.392E−2 1.144E−2 9.006E−4 2.412E−4 3.223E−4 2.773E−8 6.327E−9 5.719E−9
0.9 3.144E−1 4.384E−2 2.796E−2 1.450E−3 3.222E−4 4.725E−4 4.217E−8 8.243E−9 8.431E−9

Table 4
Comparison of HWCM and H-HWCM for Test Problem 2.

J HWCM H-HWCM (s = 1)

L∞(y1) L∞(y2) L∞(y3) CPU time L∞(y1) L∞(y2) L∞(y3) CPU time

2 1.07E−01 2.28E−02 3.37E−02 0.0128 9.65E−04 3.46E−05 3.68E−05 0.0657
3 2.89E−02 5.99E−03 8.91E−03 0.0464 5.68E−04 4.53E−06 2.48E−06 0.0955
4 7.52E−03 1.54E−03 2.29E−03 0.0480 2.90E−04 1.58E−06 1.62E−07 0.1094
5 1.92E−03 3.90E−04 5.82E−04 0.1838 1.45E−04 4.25E−07 1.12E−08 0.3169
6 4.85E−04 9.83E−05 1.46E−04 0.5164 7.26E−05 1.08E−07 7.78E−10 1.0809
7 1.22E−04 2.46E−05 3.68E−05 0.9139 3.63E−05 2.71E−08 5.62E−11 1.7129
8 3.05E−05 6.18E−06 9.22E−06 1.4315 1.81E−06 6.79E−09 4.40E−12 2.4371

Fig. 4. Comparison of H-HWCM results with exact solution at s = 1 and J = 4 for Test Problem 2.

Test Problem 3. Consider the system of highly nonlinear and nonhomogeneous differential equations [27]

dy1(x)
dx

= cos(x) + (y1(x))2
+ y2(x) − (1 + x2

+ sin2(x)),

dy2(x)
dx

= 2x − (1 + x2) sin(x) + y1(x)y2(x),
(17)

ith initial conditions y1(0) = 0 and y2(0) = 1. The exact solution is

y1(x) = sin(x), y2(x) = 1 + x2.

e have compared the results obtained by different techniques in the interior points of the interval [0, 2] in Table 5
and also highlighted the absolute errors at xi ∈ [0, 2] of these different methods. The maximum error and CPU

times are compared in Table 6, and the accuracy of H-HWCM is better than HWCM, but in terms of time efficiency
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Fig. 5. Comparison of H-HWCM results with exact solution at s = 1 and J = 5 for Test Problem 2.

Table 5
Comparison of numerical results obtained by different methods for Test Problem 3.

x 0.1 0.3 0.6 0.9 1.2 1.5 1.8

LeNN [37]
y1(x) 0.0995 0.2970 0.5679 0.7833 0.9327 0.9974 0.9800
y2(x) 0.9862 1.0908 1.3687 1.8106 2.4418 3.2498 4.2402

MLP [37]
y1(x) 0.1019 0.2998 0.5689 0.7864 0.9329 0.9949 0.9810
y2(x) 1.0030 1.0973 1.3628 1.8056 2.4383 2.2542 4.2468

HWCM
y1(x) 0.0999 0.2957 0.5652 0.7847 0.9357 1.0071 0.9993
y2(x) 1.0109 1.0907 1.3613 1.8121 2.4441 3.2607 4.2763

H-HWCM
y1(x) 0.0998 0.2955 0.5646 0.7833 0.9320 0.9974 0.9737
y2(x) 1.0100 1.0900 1.3600 1.8100 2.4400 3.2501 4.2402

Exact
y1(x) 0.0998 0.2955 0.5646 0.7833 0.9320 0.9975 0.9738
y2(x) 1.0100 1.0900 1.3600 1.8100 2.4400 3.2500 4.2400

Absolute error y1(x) 3.00E−3 5.07E−3 5.84E−3 0.0000 7.51E−4 1.00E−4 6.36E−3
of LeNN y2(x) 2.35E−2 7.33E−4 6.39E−3 3.31E−4 7.37E−4 6.15E−5 4.97E−5

Absolute error y1(x) 2.10E−2 1.45E−2 7.61E−3 3.95E−3 9.65E−4 2.60E−3 7.39E−3
of MLP y2(x) 6.93E−3 6.69E−3 2.05E−3 2.43E−3 6.96E−4 1.29E−3 1.60E−3

Absolute error y1(x) 1.00E−3 6.76E−4 1.06E−3 1.78E−3 3.96E−3 9.62E−3 2.61E−2
of HWCM y2(x) 8.91E−4 6.42E−4 9.55E−4 1.16E−3 1.68E−3 3.29E−3 8.65E−3

Absolute error y1(x) 2.75E−10 2.19E−10 3.81E−10 6.77E−10 2.87E−10 5.03E−10 8.48E−10
of H-HWCM y2(x) 1.35E−12 1.29E−11 5.53E−11 1.04E−10 6.13E−12 7.19E−12 7.94E−12

Table 6
Comparison of HWCM with H-HWCM (s = 1) for Test Problem 3.

J HWCM CPU time H-HWCM CPU time

L∞(y1) L∞(y2) L∞(y1) L∞(y2)

3 1.7431E−03 2.4924E−03 0.0301 1.6904E−04 1.0579E−05 0.0704
4 4.5390E−04 6.4206E−04 0.1091 8.0472E−05 2.5718E−06 0.1477
5 1.1598E−04 1.6315E−04 0.2385 3.9270E−05 6.3332E−07 0.3183
6 2.9324E−05 4.1138E−05 0.5114 1.9399E−05 1.5708E−07 0.9574

there is no such big difference in the performance of both methods. The comparison of different methods with the
exact solution in the interval [0, 2] is also shown in Fig. 6.
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Fig. 6. Comparison of results obtained by HWCM and H-HWCM at J = 5 with exact solution for Test Problem 3.

Test Problem 4. Consider the system of nonlinear differential equations for an infectious disease, where t is the
independent variable instead of x

dS
dt

= a −
βSI

N
− µS,

dE1

dt
= q

βSI
N

− (µ + ε1)E1 + (1 − η)δT,

dE2

dt
= (1 − q)

βSI
N

+ ε1 E1 − (µ + ε2)E2,

dI
dt

= ε2 E2 + ηδT − (µ + γ + σ1)I,

dT
dt

= γ I − (µ + δ + σ2 + α)T,

dR
dt

= αT − µR,

(18)

subject to the initial conditions

S(0) = 30, E1(0) = 80, E2(0) = 50, I (0) = 80, T (0) = 5, R(0) = 5. (19)

n (18), we assume

N (t) = S(t) + E1(t) + E2(t) + I (t) + T (t) + R(t), (20)

here N (t) is the total population including the susceptible class S(t), slow exposed class E1(t), fast exposed class
E2(t), infected class I (t), class with proper treatment T (t), and recovered individuals R(t). The parameters in (18)
re defined in Table 7.

The exact solution of this problem is not given, so we have compared our results with the results reported in [24],
here the same behaviors of the solutions are clearly visible in Fig. 7. We have also showed the behavior of solutions
fter different years in Fig. 8. Based on the performance of the proposed method observed in the above problems,
e can conclude that the results obtained in this case are also accurate.

The minimum value of |λ| is calculated in this case as well, which obviously represents the magnitude of ρ(H−1)
see Fig. 9). From Fig. 9, it is also clear that increasing M does not affect ∥H−1

∥2 to increase quickly, which means
hat H−1 exists and is bounded, and hence this is a sufficient condition for stability of the numerical results.
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Fig. 7. Comparison of numerical solution obtained by different methods for Test Problem 4.

Fig. 8. The behaviors of the numerical results after various years for Test Problem 4.
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Table 7
Estimated or fitted values of parameters for Test Problem 4.

Parameter Detail Baseline value

a Birth rate 450,862.20088
β Contact rate 0.6001
α Recovery rate 0.01
γ Treatment rate of infective individuals 0.1500
µ Natural mortality rate 1/67.7
σ1 Disease induced death rate in I 0.2738
σ2 Disease induced death rate during treatment 0.1000
δ Leaving rate of treated individual re-enter to I or E1 0.0649
η Failure of treatment 0.2959
ε1 Rate of moving from E1 to E2 0.2351
ε2 Transfer rate from E2 to I 0.2001
q Fraction of susceptible individuals being infected 0.5259

Fig. 9. ρ(H−1) and ∥H−1
∥2 for Test Problem 4.

. Conclusion

In this article, HWCM and H-HWCM are used to solve systems of linear and nonlinear ordinary differential
quations in combination with the quasi-linearization technique. The numerical results are stable, time efficient,
nd in line with theoretical orders of convergence. Both methods are effective and provide accurate and acceptable
esults, but it is clear from the tables that H-HWCM is more accurate and of faster convergence than HWCM. The
urrent approaches can be extended to PDEs and systems of PDEs with some modifications. This is the focus of
ur future projects.
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