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Abstract
The main objective of this research is to introduce an innovative and advanced methodology for the design of unknown-
input observers adapted to continuous-time Takagi–Sugeno (T–S) systems. We focus on the development of functional
observers capable of handling the unknown inputs present in the state and output equations. The design and analysis of these
observers are strongly based on the principles of Lyapunov–Krasovskiı̆ stability theory, providing a robust and theoretically
powerful background. The convergence criteria for these observers are structured according to the formulation of linear matrix
inequalities, providing a strict basis for stability analysis. In order to underline the effectiveness of the proposed approach,
we offer full validation through simulation results derived from two numerical examples. These examples serve as specific
demonstrations of the performance of the designed observers, highlighting their effectiveness in both reduced-order and
full-order scenarios. Through this detailed exploration, we aim to highlight the applicability in actual applications and the
reliability of our methodology introduced in the field of unknown-input observers for T–S systems.

Keywords Takagi–Sugeno (T–S) · Functional observer (FO) · Unknown input · Reduced order · Full-order · Lyapunov–
Krasovskiı̆ stability · Linear matrix inequalities (LMIs)
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1 Introduction

Takagi–Sugeno (T–S) systems, introduced in [1], represent
a class of fuzzy systems designed to approximate nonlin-
ear systems with known complex models. Demonstrating
their usefulness in a variety of control problems [2–4], T–
S systems utilize the modeling concept in which a nonlinear
system is characterized by a collection of local linear mod-
els, seamlessly interconnected by nonlinear functions. T–S
models are recognized as universal approximators [5, 6],
highlighting their ability to effectively capture the complex
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dynamics of nonlinear systems. An advantageous feature of
T–S models is their linearity in parts of the results. This
linearity allows classical techniques designed for linearmod-
els to be adapted to meet a myriad of challenges, including
control design, stability analysis, observation and filtering.
The versatility and efficiency of T–S systems make them an
invaluable tool for solving a variety of problems in systems
analysis and control.

A functional observer directly estimates the state func-
tion, a design challenge that has been the subject of active
research for several decades. Its distinctive ability to estimate
state functions in a single step, as opposed to a two-step pro-
cess, has received particular attention. In addition, functional
observers help to reduce the order of observers. Recently,
approaches to design functional observers have been estab-
lished in [7–21]. For linear systems, [22] derived a finite-time
functional observer. A unique linear functional observer for
LTI systems was introduced in [23]. The use of functional
observers in the design of output feedback controllers for
T–S systems can be found, for example, in [24], where the
closed-loop stability criteria are expressed in terms of LMIs.
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A revised description of necessary and sufficient criteria in
the presence of functional observers has been provided in
[25].

This paper studies the presence of functional observers for
nonlinear systems in the context of unknown inputs affecting
both state and output. The study uses the T–S fuzzymodel, in
particular for scenarios where some inputs are measurable - a
commoncondition in practical applications.Many real-world
systems are susceptible to external disturbances that mani-
fest themselves in the form of unknown inputs. The design of
unknown-input observers (UIOs) has received considerable
research attention, as evidenced byworks such as [26–28]. In
particular, the application of fuzzy functional unknown-input
observers has demonstrated its effectiveness in contexts rang-
ing from the landing of quadrotor aerial robots to wastewater
treatment plants, as highlighted in [29].

Stability analysis of Takagi–Sugeno (T–S) systems with
unknown inputs has been the subject of various investiga-
tions, as shown by works such as [30, 31]. Remarkably,
[32] revealed that models with unknown inputs can be trans-
formed into T–S models. Furthermore, in [33], a design
methodology was proposed, combining a proportional mul-
tiple integral (PMI) observer with the Lipschitz approach
for T–S systems with unmeasurable premise variables. The
work presented in [34] introduced an H∞ unified dynamic
observer (DO) applicable to a class of linear systems with
unknown inputs and disturbances.

Distinctly, [35, 36] addressed the design of observers to T–
S systemswith delays.Notably, the authors assumedbounded
delays to derive their results. In our present work, we con-
tribute by designing a full-order unknown-input observer,
extending our discussion to encompass the special case of
reduced-order observers without the presence of delays. This
extension of our study aims to provide a comprehensive
understanding of the dynamics associated with unknown
inputs in both full-order and reduced-order observer scenar-
ios.

The principal purpose of this work is to develop a tech-
nique for designing functional observers with unknown
inputs for continuous-time nonlinear systems, using the T–
S system representation. Based on Lyapunov theory, we
establish necessary and sufficient criteria expressed in terms
of linear matrix inequalities (LMIs), which can be solved
with tools such as the Yalmip/MATLAB toolbox. We extend
our approach to cover both reduced-order and full-order
observers, providing a multi-purpose setting for practical
implementation and design considerations.

The remainder of this paper is structured as follows. Sec-
tion2 presents the design problem of the observer under
study, aswell as somepreliminary results. Section3describes
the design approach of a fuzzy functional observer with
unknown input. In Sect. 4, we study the special case of
a reduced-order observer. Section5 presents the design of

a full-order fuzzy observer. Section6 provides simulation
examples to test the theoretical convergence of the observer.
Conclusions are presented in Sect. 7.

2 Preliminaries and problem setting

Let us consider the class of nonlinear systems defined by the
following continuous-time T–S model, see e.g., [1].

Plant rule i :
If θ1(t) is M1

i and . . . and θi (t) is Mi
k .

Then

ẋ(t) = Ai x(t) + Biu(t) + Rih(t), i = 1, . . . ,m, (1)

where θ1(t), . . . , θl are the premise variables, supposed to be
measurable, Mi

1, . . . , M
k
i are the fuzzy sets for θk(t), k is the

number of premise variables, r is the number of IF-THEN
rules. The state vector is represented by x(t) ∈ R

n . The input
vector is represented by u(t) ∈ R

m , y(t) ∈ R
p is the output

vector, h(t) ∈ R
q is the unknown input vector. This model

is represented compactly by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) =
m∑

i=1

μi (θ(t)){Ai x(t) + Biu(t) + Rih(t)}
y(t) = Cx(t) + Sh(t)
z(t) = Ex(t)
x(t0) = ρ0,

(2)

where z(t) ∈ R
r is the vector to be estimated, with r ≤ n.

Ai ∈ R
n×n , Bi ∈ R

n×m , Ri ∈ R
n×q , i = 1, . . . ,m,

C ∈ R
p×n , S ∈ R

p×q and E ∈ R
r×n are known con-

stant matrices with compatible dimensions, and ρ0 is the
initial datum. Without losing generality, it is supposed that
rankC = p and rank E = r . The fuzzy basis functions are
represented by

μi (θ(t)) =

k∏

j=1

ψi j (θ j (t))

m∑

i=1

k∏

j=1

ψi j (θ j (t))

(3)

for i = 1, . . . ,m, where θ(t) = [θ1(t), . . . , θl(t)]T and
ψi j (θ j (t)), i = 1, . . . ,m, j = 1, . . . , k is the grade of mem-

bership of θ j (t) in F j
i . For simplicity, we shall remove the

parameter μi (θ(t)) in the following. The fuzzy basis func-
tions verify by definition.

0 ≤ μi (θ(t)) ≤ 1, ∀i = 1, . . . ,m,

m∑

i=1

μi (θ(t)) = 1. (4)
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Before reconstructing the state function, we need first to
define the following functional observer

⎧
⎪⎨

⎪⎩

ν̇(t) =
m∑

i=1

μi (θ(t)){Niν(t) + Ji y(t) + Hiu(t)}
ẑ(t) = ν(t) + Gy(t),

(5)

where ν ∈ R
r is the state vector of the observer, ẑ(t) ∈ R

r

is the estimate of z(t), Ni , Ji , Hi , i = 1, . . . ,m and G are
unknown and constant matrices of appropriate dimensions,
to be determined such that ẑ(t) asymptotically converges to
z(t).

The design of an unknown-input functional observer
(UIFO) can be specified using the above notation.

Problem description

Select the observer parameters Ni , Ji , Hi for i = 1, . . . ,m
and G, such that

lim
t→+∞[z(t) − ẑ(t)] = 0, (6)

for any initial functions.
Before proceeding, we recall the following assumption

and proposition.

Assumption 1. The pairs (Ai , Bi ) and (Ai ,C) are
observable and detectable.
Proposition 1. The pair (Λ, Γ ) is observable.

Proof The observability of the pair (Λ, Γ ) implies

rank

[
s I − Γ

Λ

]

= n, s ∈ C, Re(s) ≥ 0, (7)

according to [37], and this completes the proof. �	

Notations

In the following, the symbols I and O denote, respectively,
the identity and zero matrices.

3 Functional observer design

The observation error vector is defined as the difference
between z(t) and its estimate ẑ(t) by

ε(t) = z(t) − ẑ(t) = T x(t) − ν(t) − GSh(t), (8)

with

T = E − GC . (9)

In Proposition 3.1 below, we give the conditions needed to
prove the existence and stability of the functional observer
(5).

Proposition 3.1 For any set of initial conditions, the estimate
ẑ(t) converges asymptotically to z(t). The initial conditions
x(0) and ẑ(0) are appropriate for any h(t) and any u(t) if
the following conditions hold.

(1) ε̇(t) =
m∑

i=1

μi (θ(t))Niε(t) is asymptotically stable,

(2) T Ai − NiT − JiC = 0 for all i = 1, . . . ,m,
(3) T Ri − NiGS − Ji S = 0 for all i = 1, . . . ,m,
(4) GS = 0,
(5) Hi = T Bi for all i = 1, . . . ,m.

Proof Using the same reasoning as for [12] and from (8), the
error dynamics is as follows:

ε̇(t) = T ẋ(t) − ν̇(t) (10)

Using (2) and (5), relation (10) can be rewritten as

ε̇(t) =
m∑

i=1

μi (θ(t)){Niε(t) + T Ai − NiT − JiC)x(t)

+(T Ri − NiGS − Ji S)h(t) − GSḣ(t)

+(T Bi − Hi )u(t)}. (11)

Now, if conditions (2)–(5) are verified, the estimation error
dynamics (11) becomes

ε̇(t) =
m∑

i=1

μi (θ(t))Niε(t). (12)

Then, we can see that if condition (3) is satisfied, then
ẑ(t) → z(t). This concludes the proof. �	

The design of the functional observer is now simplified to
finding the gain matrices Ni , Ji , Hi , i = 1, . . . ,m, T and
G such that Proposition 3.1 is satisfied. By substituting T in
conditions (2) and (3) in Proposition 3.1, we have

Ni E = E Ai − [
G Fi

]
[
CAi

C

]

, (13)

where Fi = Ji − NiG, i = 1, . . . ,m. Now, considering that
E has full-row rank, let D ∈ R

(n−r)×n , M1 ∈ R
n×r and

M2 ∈ R
n×(n−r) such that

[
E
D

]

= [ M1 M2 ]−1. (14)
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Post-multiplying (13) by (14), we get,

Ni = E Ai M1 − [
G Fi

]
[
CAi

C

]

M1, (15)

where
[
G Fi

]
is an unknown matrix that satisfies the condi-

tion

[
G Fi

]
ξi = ϕi (16)

with

ξi =
[
CAi M2 CRi S
CM2 S O

]

and

ϕi = E Ai M2

for i = 1, . . . ,m. According to the above equations, knowing
Fi and G is both necessary and sufficient to determine Ni ,
Ji , and Hi , i = 1, . . . ,m.

Necessary and sufficient conditions for the existence of a
solution to (16) are given in the following lemma.

Lemma 3.1 There are matrices G and Fi that satisfy (16) if
and only if

rank

⎡

⎢
⎢
⎣

E Ai E Ri O
C Ai CRi S
C S O
E O O

⎤

⎥
⎥
⎦ = rank

⎡

⎣
CAi CRi S
C S O
E O O

⎤

⎦ (17)

for i = 1, . . . ,m.

Proof A solution to (16) exists according to the general solu-
tion of linear algebraic equations [38] if and only if

ϕi (I − ξ+ξi ) = 0, (18)

where ξ+
i is a generalized inverse of matrix ξi satisfying

ξiξ
+
i ξi = ξi and (17) are satisfied for i = 1, . . . ,m. Equation

(18) can also be written as

rank

[
ξi
ϕi

]

= rank [ξi ] , (19)

for i = 1, . . . ,m. Now we define the matrix

W1 =
⎡

⎣
M1 M2 O O
O O I O
O O O I

⎤

⎦ .

Then, we have

rank

⎡

⎢
⎢
⎣

E Ai E Ri O
C Ai CRi S
C S O
E O O

⎤

⎥
⎥
⎦ = rank

⎡

⎢
⎢
⎣

E Ai E Ri O
C Ai CRi S
C S O
E O O

⎤

⎥
⎥
⎦ W1

=r + rank

[
ξi
ϕi

]

. (20)

On the other hand, we have

rank

⎡

⎣
CAi CRi S
C S O
E O O

⎤

⎦ = rank

⎡

⎣
CAi CRi S
C S O
E O O

⎤

⎦ W1

=r + rank [ξi ] . (21)

So, from (20), (21) and considering the equality (19), we
can conclude the proof. �	

We assume that (17) is satisfied. Hence, the general solu-
tion of (16) is given by

[
G Fi

] = ϕiξ
+
i − Xi (I − ξiξ

+
i ), (22)

for i = 1, . . . ,m. Equivalently,

G = γi − Xiδi and Fi = i − Xi�i , (23)

where

γi = ϕiξ
+
i

[
I
O

]

, δi = (I − ξiξ
+
i )

[
I
O

]

(24)

and

i = ϕiξ
+
i

[
O
I

]

, �i = (I − ξiξ
+
i )

[
O
I

]

(25)

for i = 1, . . . ,m, where Xi , i = 1, . . . ,m, is an arbitrary
matrix of appropriate dimension that will be determined in
the sequel using the LMI approach. By replacing the matrix[
G Fi

]
giving by (22) in (15), we get

Ni = αi − Xiβi , (26)

where

αi = E Ai M1 − ϕiξ
+
i

[
CAi

C

]

M1 (27)

and

βi = (I − ξiξ
+
i )

[
CAi

C

]

M1 (28)

for i = 1, . . . ,m.
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Remark 3.1 By a suitable selection of matrices Xi , i =
1, . . . ,m, it is necessary and sufficient that the pairs (αi , βi ),
i = 1, . . . ,m, are observable. If (αi , βi ), i = 1, . . . ,m, is
not observable, then a matrix Xi , i = 1, . . . ,m, can still be
found such that the observer is asymptotically stable if and
only if the pair (αi , βi ), i = 1, . . . ,m, is detectable.

The expressions providing the matrices Ji and Hi , i =
1, . . . ,m, are

Ji = Fi + Ni E, ∀i = 1, . . . ,m, (29)

Hi = (E − GC)Bi , ∀i = 1, . . . ,m. (30)

The dynamics of the estimation error under the conditions of
Proposition 3.1 are provided by

ε̇(t) =
m∑

i=1

μi (θ(t)){αi − Xiβi }ε(t). (31)

Therefore, the design of the functional observer (5) is sim-
plified to determine the matrices Xi that satisfy condition (1)
of Proposition 3.1.

In the next result, we give necessary and sufficient condi-
tions for Ni , i = 1, . . . ,m to be stable.

Lemma 3.2 The matrices Ni , i = 1, . . . ,m, given by (26)
are Hurwitz if and only if

rank

⎡

⎣
sE − E Ai −ERi O

C Ai CRi S
C S O

⎤

⎦ = rank

⎡

⎣
CAi CRi S
C S O
E O O

⎤

⎦

(32)

for all s ∈ C,Re(s) ≥ 0, i = 1, . . . ,m.

Proof The detectability of the pair (αi , βi ), i = 1, . . . ,m,
which is equivalent to (7), is again equivalent to the stability
of Ni , i = 1, . . . ,m. The left-hand side of (32) is equivalent
to

rank

⎡

⎣
sE − E Ai −ERi O

C Ai CRi S
C S O

⎤

⎦

= rank

⎡

⎣
sE − E Ai −ERi O

C Ai CRi S
C S O

⎤

⎦W1

= rank W2

⎡

⎣
sE − E Ai M1 −ϕi[

CAi M1

CAi M2

]

ξi

⎤

⎦ .

We now define the full column matrix by

W2i =
⎡

⎣
I −ϕiξ

+
i

O I − ξiξ
+
i

O ξiξ
+
i

⎤

⎦ , i = 1, . . . ,m,

and the full row matrix by

W3i =
⎡

⎣
I O

ξiξ
+
i

[
CAi M1

CAi M2

]

I

⎤

⎦ , i = 1, . . . ,m.

Then, one has

rank

⎡

⎣
sE − E Ai −ERi O

C Ai CRi S
C S O

⎤

⎦

= rank W2

⎡

⎣
sE − E Ai M1 −ϕi[

CAi M1

CAi M2

]

ξi

⎤

⎦

= rank

⎡

⎢
⎢
⎣

[
s I − αi

βi

]

O

ξiξ
+
i

[
CAi M1

CAi M2

]

ξi

⎤

⎥
⎥
⎦W3

= rank

[
s I − αi

βi

]

+ rank ξi ,

using the result of Lemma 3.1, we obtain (32). �	
For the computation ofmatrices Xi , the following theorem

is given.

Theorem 3.1 There exist matrices Xi , i = 1, . . . ,m, such
that condition (1) of Proposition 3.1 holds if and only if there
exist a symmetric positive definite matrix P and Yi , i =
1, . . . ,m, fulfilling the condition

[
αi P + PαT

i − Yiβi − βT
i Y

T
i O

O −I

]

< O (33)

for i = 1, . . . ,m. In this situation, the matrices Xi are given
by Xi = P−1Yi , i = 1, . . . ,m.

Proof Using the Lyapunov function V (t) = εT Pε with P =
PT > 0, its derivative is given by

V̇ (t) = ε̇T Pε + εT P ε̇ = εT (NT
i P + PNi )ε.

Clearly, V̇ (t) < 0 if and only if

NT
i P + PNi < O. (34)

Replacing Ni , i = 1, . . . ,m, by its value (26), LMI (34) is
equivalent to

αi P + PαT
i − Y iβi − βT

i Y
T
i < O, (35)

where Y T
i = PXi . These conditions are equivalent to the

LMIs (33) by applying the Schur lemma [39]. Then, the proof
is complete. �	
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Remark 3.2 If S = 0, then conditions (17) and (32) are sim-
plified as

rank

⎡

⎢
⎢
⎣

E Ai E Ri

C Ai CRi

C O
E O

⎤

⎥
⎥
⎦ = rank

⎡

⎣
CAi CRi

C O
E O

⎤

⎦ , (36)

rank

⎡

⎣
sE − E Ai −ERi

C Ai CRi

C O

⎤

⎦ = rank

⎡

⎣
CAi CRi

C O
E O

⎤

⎦ (37)

for i = 1, . . . ,m.

Wepropose the followingdesign approach for theobtained
observer.

Algorithm 1 Design steps of unknown input functional
observers

1: Input: Select a matrix E ∈ R
(n−r)×n to make

[
E
C

]

non-singular.

2: if rank conditions (17) and (32) are satisfied, then
3: Compute the matrices M1 and M2 from (14).
4: Deduce the values of matrices αi and βi , i = 1, . . . ,m, by using

(27) and (28).
5: Solve the LMI (33), and compute Xi , i = 1, . . . ,m.
6: Compute Ni , i = 1, . . . ,m, from equation (26).
7: Compute G and Fi , i = 1, . . . ,m, from equation (23).
8: Compute Ji and Hi , i = 1, . . . ,m, from (29) and (30).
9: end if

Algorithm 1 provides all observer parameters.

Remark 3.3 If r = n − p, then the observer is of reduced
order, in which case the proposed design amounts to trans-
forming the system into an equivalent system (2), as dis-
cussed in the following section.

4 Reduced-order observer design

In this section, we present a special case of a reduced-order
observer and we give the conditions under which it is asymp-
totically stable.

If r = n− p, then conditions (17) and (32) are equivalent
to

rank

⎡

⎣
S O

CRi S
ERi O

⎤

⎦ = rank

[
S O

CRi S

]

, (38)

rank

⎡

⎣
s Ir − Ai −Ri O

C S O
CAi CRi S

⎤

⎦ = r + rank

[
S 0

CRi S

]

(39)

for i = 1, . . . ,m. These are the conditions developed for the
full-order observer for linear systems, see [40]. Then, (15)
and (16) can be written as

[
Ni Fi

]
[
E
C

]

+ GCAi = L Ai , (40)

Fi S + GCRi = LRi , (41)

and

GS = 0 (42)

for i = 1, . . . ,m. Now, let

[
E
C

]−1

= [
D1 D2

]
. Then the

general solution of (42) is expressed by

G = �i�
+
i − Zi (I − �i�

+
i ), (43)

Fi = E Ai D2 − �i�
+
i C Ai D2 + Zi (I − �i�

+
i )CAi D2

(44)

for i = 1, . . . ,m, with �i = [
CRi − CAi D2S S

]
and θi =[

ERi − E Ai D2S O
]
, i = 1, . . . ,m. Then,

Ni = �i − Zii , i = 1, . . . ,m (45)

with �i = E Ai D1 − �i�
+
i C Ai D1 and i = (I −

�i�
+
i )CAi D1, i = 1, . . . ,m.

The matrices Zi , i = 1, . . . ,m, can be determined from
the following theorem.

Theorem 4.1 The reduced-order observer (5) is asymptot-
ically stable if there exist symmetric matrices P and Xi ,
i = 1, . . . ,m, satisfying the inequalities

[
�iP + P�T

i − Xii − T
i X

T
i O

O −I

]

< O. (46)

The matrices Zi are determined by Zi = P
−1

Xi , i =
1, . . . ,m.

The proof of Theorem 4.1 is similar to the proof of The-
orem 3.1, thus it is omitted.

Remark 4.1 In case where E = I , then the associated nec-
essary and sufficient conditions for the existence of the
full-order fuzzy observer (5) are reduced to the following
section.

5 Full-order observer design when E = I

This section is devoted to the design of the observer (5) when
E = I , in which case full state estimation is possible. In such
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a case, the observer dynamics of system (2)when z(t) = x(t)
is described by

⎧
⎪⎨

⎪⎩

ν̇(t) =
m∑

i=1

μi (θ(t)){Niν(t) + Ji y(t) + Hiu(t)}
x̂(t) = ν(t) + Gy(t).

(47)

The state estimation error in this case is defined by

ε(t) = x(t) − x̂(t). (48)

Now, (9) becomes

T = I − GC . (49)

Using the new form of T given in (49), (15) and (16) can be
written as

Ni = Ai + [
G Fi

]
[
CAi

C

]

, (50)

[
G Fi

]
Ξi = �i (51)

with

Fi = −Ji − NiG,

where

Ξi =
[
CRi S
S O

]

and

�i = [−Ri O
]

for i = 1, . . . ,m.
The following result specifies the necessary and sufficient

criteria for (51) to have a solution.

Lemma 5.1 There exists a solution of (51) if and only if

rank

[
CRi S
S O

]

= rank G + rank

[
Ri

S

]

, (52)

for i = 1, . . . ,m.

Proof A solution to (51) exists if and only if

Ξi�
+
i �i = Ξi (53)

for i = 1, . . . ,m, where Ξ+
i is a generalized inverse of the

matrix Ξi satisfying ΞiΞ
+
i Ξi = Ξi , or equivalently

rank

[
Ξi

�i

]

= rank [Ξi ] , i = 1, . . . ,m, (54)

which is equivalent to

rank

⎡

⎣
I O C
O I O
O O I

⎤

⎦

[
Ξi

�i

]

= rank

⎡

⎣
O S
S O

−Ri O

⎤

⎦

= rank[Ξi ],
which is exactly condition (52). Now, under condition (52),
the general solution of (55) is given by

[
G Fi

] = �iΞ
+
i − Xi (I − ΞiΞ

+
i ) (55)

for i = 1, . . . ,m. In this case, Xi , i = 1, . . . ,m, are arbi-
trary matrices of suitable size that are found using an LMI
technique in the sequel. Ni , i = 1, . . . ,m, are supplied from
(55) by

Ni = Ai − XiBi , (56)

where

Ai = Ai + �iΞ
+
i

[
CAi

C

]

(57)

and

Bi = (I − ΞiΞ
+
i )

[
CAi

C

]

(58)

for i = 1, . . . ,m. �	
Now we state the result below, which will be utilized in

the sequel.

Lemma 5.2 The matrices Ni , i = 1, . . . ,m, are Hurwitz if
and only if

rank

[
s I − Ai −Ri

C S

]

= n + rank

[
Ri

S

]

(59)

for i = 1, . . . ,m.

Proof We have

rank

⎡

⎣
s I − Ai �i[
CAi

C

]

Ξi

⎤

⎦

= rank

⎡

⎣
I O O
C I −s I
O O I

⎤

⎦

⎡

⎣
s I − Ai �i[
CAi

C

]

Ξi

⎤

⎦

= rank

[
s I − Ai −Ri

C S

]

+ rank S.

Now, considering the matrices

W4i =
⎡

⎣
I −�iΞ

+
i

O I − ΞiΞ
+
i

O ΞiΞ
+
i

⎤

⎦
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and

W5i =
⎡

⎣
I O

−Ξ+
i

[
Ai

C

]

I

⎤

⎦

for i = 1, . . . ,m, we have

rank

⎡

⎣
s I − Ai �i[
CAi

C

]

Ξi

⎤

⎦ = W4i

⎡

⎣
s I − Ai �i[
CAi

C

]

Ξi

⎤

⎦ W5i

= rank

[
s I − Ai

Bi

]

+ rank Ξi .

Then, by using Assumption 2, the proof is completed. �	
The determination of the matrices Xi , i = 1, . . . ,m, can
be performed using the following theorem, which is also a
corollary of Theorem 3.1.

Theorem 5.1 The full-order observer (5) is asymptotically
stable if there exist symmetric matrices P and Yi , i =
1, . . . ,m, satisfying the inequalities

[
AiP + PA

T
i − YiBi − B

T
i Y

T
i O

O −I

]

< O (60)

for i = 1, . . . ,m. The matrix Xi can be determined by Xi =
P

−1
Yi , i = 1, . . . ,m.

Proof The proof is identical to the proof of Theorem 3.1. �	
Given the preceding results, the suggested observer can

be designed as follows.

Algorithm 2 Design steps of full-order unknown input
observers
1: Verify that the rank conditions (52) and (59) are satisfied.
2: Compute the matrices Ai and Bi , i = 1, . . . ,m, by using (57) and

(58).
3: Solve the LMI (60) and compute Xi , i = 1, . . . ,m.
4: Compute Ni , i = 1, . . . ,m using (56).
5: Compute G and Fi , i = 1, . . . ,m, respectively using (55).
6: From (29) and (30), compute Ji and Hi , i = 1, . . . ,m.

To validate the theoretical results, the next section is
designed to give some interesting numerical examples.

6 Numerical examples

Two examples are provided in this section to demonstrate the
observer design techniques presented in this paper.

Example 6.1 Let us consider the system presented in Sect. 2,
with the following matrices borrowed from [33]:

A1 =

⎡

⎢
⎢
⎣

−0.0035 −22.5 0 −32.2
0 −0.094 1 0
0 −1.94 −0.188 0
0 0 1 0

⎤

⎥
⎥
⎦ ,

A2 =

⎡

⎢
⎢
⎣

−0.04 −22.1 0 −32.4
0 −0.1 1 0
0 −1.77 0.22 0
0 0 1 0

⎤

⎥
⎥
⎦ ,

B1 =

⎡

⎢
⎢
⎣

−8.83
−0.0196
−2.02

0

⎤

⎥
⎥
⎦ , B2 =

⎡

⎢
⎢
⎣

−8.7
−0.03
−1.89

0

⎤

⎥
⎥
⎦ ,

R1 = 0.05 ∗

⎡

⎢
⎢
⎣

0.5 0.7
0.5 1
0.5 0.5
0.5 0.4

⎤

⎥
⎥
⎦ , R2 = R1,

C =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ , S = 0.

The membership functions are

μ1(θ(t)) = 0.5(1 − tanh (θ(t))),

μ2(θ(t)) = 1 − μ1(θ(t))

In this example,we select thematrix E = I , sowe are dealing
with full-order observers (Sect. 5). We then use Algorithm 2
in order to model an observer of the form (5). We first check
the rank conditions (52) and (59). The solutions from Theo-
rem 5.1 are then obtained using the Yalmip toolbox [41] and
the MATLAB solver.
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P = 187.4267 ∗

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

Y1 =

⎡

⎢
⎢
⎣

123.1629 −49.2651 −73.8977 0 93.7163 −1.5927 −0.0359 0
−58.5997 23.4411 35.1586 0 −1.5927 −103.8652 −72.5625 0
−80.6756 32.2666 48.4029 0 −0.0359 −72.5625 91.7944 0
−81.8252 32.7277 49.0975 0 −4.7720 72.1135 50.9836 0

⎤

⎥
⎥
⎦ ,

Y2 =

⎡

⎢
⎢
⎣

123.1629 −49.2651 −73.8977 0 93.7104 −1.6885 −0.1257 0
−57.8153 23.1297 34.6916 0 −1.6885 −84.6692 −47.8521 0
−78.3285 31.3326 46.9959 0 −0.1257 −47.8521 91.4052 0
−81.8072 32.7277 49.0915 0 −4.7960 58.3721 33.1887 0

⎤

⎥
⎥
⎦ ,

X1 =

⎡

⎢
⎢
⎣

0.6571 −0.2628 −0.3943 0 0.5000 −0.0085 −0.0002 0
−0.3126 0.1251 0.1876 0 −0.0085 −0.5542 −0.3871 0
−0.4304 0.1722 0.2583 0 −0.0002 −0.3871 0.4898
−0.4366 0.1746 0.2620 0 −0.0255 0.3848 0.2720 0

⎤

⎥
⎥
⎦ ,

X2 =

⎡

⎢
⎢
⎣

0.6571 −0.2629 −0.3943 0 0.5000 −0.0090 −0.0007 0
−0.3085 0.1234 0.1851 0 −0.0090 −0.4517 −0.2553 0
−0.4179 0.1672 0.2507 0 −0.0007 −0.2553 0.4877 0
−0.4365 0.1746 0.2619 0 −0.0256 0.3114 0.1771 0

⎤

⎥
⎥
⎦ .

The associated observer parameters are then

N1 =

⎡

⎢
⎢
⎣

−0.5000 −0.0083 −0.0001 −0.0254
0.0083 −0.5000 0.3729 −1.5937
0.0001 −0.3729 −0.5000 −1.1491
0.0254 1.5937 1.1491 −0.5000

⎤

⎥
⎥
⎦ ,

N2 =

⎡

⎢
⎢
⎣

−0.5000 −0.0072 0.0003 −0.0250
0.0072 −0.5000 0.2312 −1.4685

−0.0003 −0.2312 −0.5000 −0.7507
0.0250 1.4685 0.7507 −0.5000

⎤

⎥
⎥
⎦ ,

J1 =

⎡

⎢
⎢
⎣

0.3289 0.0058 0.0003 0.0170
−0.0051 0.3289 −0.2447 1.0476
0.0003 0.2454 0.3289 0.7554

−0.0164 −1.0469 −0.7548 0.3289

⎤

⎥
⎥
⎦ ,

J2 =

⎡

⎢
⎢
⎣

0.3289 0.0050 0.0001 0.0167
−0.0044 0.3289 −0.1516 0.9653
0.0005 0.1522 0.3289 0.4936

−0.0161 −0.9647 −0.4930 0.3289

⎤

⎥
⎥
⎦ ,

H1 =

⎡

⎢
⎢
⎣

−16.6719
−10.8825
−12.1970
−10.8696

⎤

⎥
⎥
⎦ , H2 =

⎡

⎢
⎢
⎣

−16.3368
−10.6397
−11.8619
−10.6200

⎤

⎥
⎥
⎦ ,

G = 0.6571, F1 = −0.0578, F2 = −0.0565.

Fig. 1 Evolution of the estimation errors (full-order observer)

Figure 1 shows the evolution of estimation errors of the state
variables x1(t), x2(t), x3(t) and x4(t) from the initial condi-
tion ε(0) = [ 0.2 0.1 0.3 0.5 ]T . It is seen that the designed
full-order observer ensures the convergence to zero of all
state estimation errors, demonstrating the effectiveness of
the proposed approach.

Example 6.2 The T–S system presented below is now used
to demonstrate the synthesis techniques and to validate the
stability criteria specified in Theorem 3.1.

A1 =
[−0.4 −1

0.4 −0.1

]

, A2 =
[−0.6 −0.1

2 −0.2

]

,

B1 =
[
0.4
0.3

]

, B2 =
[
0.5
0.2

]

, C = [
0.5 −1

]
,
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S = 0, E = [
1 0.5

]
,

R1 =
[

0.2
−0.3

]

, R2 =
[−0.5

0.4

]

.

The membership functions for this system are assumed to be

μ1(θ(t)) =
[

1 −
(

1

1 + exp(3(−x1(t)) − 0.5π)

)]

×
(

1

1 + exp(3(−x1(t)) − 0.5π)

)

,

μ2(θ(t)) = 1 − μ1(θ(t))

Let us apply step-by-step Algorithm 1. First, conditions (17)
and (32) should be checked:

rank

⎡

⎢
⎢
⎣

E Ai E Ri O
C Ai CRi S
C S O
E O O

⎤

⎥
⎥
⎦ = rank

⎡

⎣
CAi CRi S
C S O
E O O

⎤

⎦ = 3,

rank

⎡

⎣
sE − E Ai −ERi O

C Ai CRi S
C S O

⎤

⎦ = rank

⎡

⎣
Ci Ai CRi S
C S O
E O O

⎤

⎦ = 3

for i = 1, 2. Hence, conditions (17) and (32) hold, ensur-
ing the existence of a stable observer of the form (5). Then,
matrices M1 and M2 can be evaluated as

M1 =
[
1
2

]

, M2 =
[

1
−2

]

.

By using the Yalmip toolbox [41] and MATLAB, we obtain
the solutions to LMI (33) as

P = 219.3352, Y1 = [ 0.7472 0.9940 ], Y2 = [ 76.7348 −95.9185 ].

Then, the free gain matrices X1 and X2 are computed as

X1 = [ 0.0034 0.0045 ], X2 = [ 867.2226 −21.7727 ].

Following that, the functional observer parameters are

N1 = −1, N2 = −0.0719, J1 = 0.6250,

J2 = 0.7500, H1 = 0.5625, H2 = 0.5938,

G = 0.1250, F1 = 0.7500, F2 = 0.7500.

The observer behavior is illustrated in Figs. 2, 3, 4, 5 and
6, with the initial conditions x(0) = 0.001 and ν(0) = 0.1.
Figures 2 and 3 show the system states and their estimates.
Clearly, these states are well estimated. Figure 4 shows that
the corresponding estimation errors do converge to zero. Fig-
ures 5 and 6 show the control input u and the unknown input
h.

Fig. 2 Evolution of the states

Fig. 3 Evolution of the output z(t) and its estimation ẑ(t)

Fig. 4 Evolution of the estimation error

Fig. 5 The known input u
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Fig. 6 The unknown input h

7 Conclusion

To conclude, our research has addressed the complex prob-
lem of designing functional observers suitable for Takagi–
Sugeno systems, particularlywhen confrontedwith unknown
system inputs. Through our exhaustive efforts, we have
not only developed a systematic design approach, but also
established strict stability conditions in the form of linear
matrix inequalities (LMIs) with equality constraints. The
practical implementation of our theoretical framework is
facilitated by the introduction of algorithms, which effec-
tively provide observer gains. In particular,we use theYalmip
toolbox for numerical solutions, which guarantees a robust
and efficient computational process. Further highlighting the
practical applicability and significance of our contributions,
we have carried out extensive numerical simulations. The
results obtained validate the relevance and effectiveness of
our theoretical results, as embedded in Theorems 3.1, 4.1,
and 5.1, as well as the practical algorithms proposed. Thanks
to this dual validation process—theoretical and applied—our
work not only advances the field of functional observers for
Takagi–Sugeno systems, but also builds a bridge between
theoretical ideas and real-world applications. The study can
be extended to the case of discrete systems or fuzzy systems
with time-varying delays [21, 42].
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