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Abstract
The objective of this paper is to study the existence of solutions for two classes of dynamic 
initial value problems in Banach spaces. Our approach is based on the concept of measure 
of noncompactness and fixed point theorems of Sadovskiĭ and Mönch. We provide some 
new examples to illustrate our results.

Keywords Dynamic equations · Local and nonlocal conditions · Fixed point theorems · 
Measure of noncompactness
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1 Introduction

Dynamic equations on time scales play a significant role in the mathematical model-
ling of numerous real-world phenomena involving continuous and discrete data simul-
taneously, for example, in population dynamics [20, 37], in economics [3, 4], in con-
trol theory [24, 34], and in optimization [36]. In recent years, the theory of dynamic 
equations on time scales has been extensively investigated by several researchers. 
The sphere of study of dynamic equations covers various aspects like qualitative and 
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quantitative properties of solutions, stability of solutions, controllability of solutions, 
and applications in various areas of applied science and engineering [5, 17, 18, 22, 24, 
29, 36], to mention a few.

It is well known that dynamic equations on time scales are an excellent tool for 
modelling any real-world phenomena that contain discrete and continuous-time data 
simultaneously. Motivated by numerous applications of dynamic equations in various 
areas of applied science, engineering, and technology, in this paper, we study the exist-
ence of solutions of two classes of dynamic first-order initial value problems. We first 
discuss the existence of solutions to the dynamic first-order local initial value problem

where A ∈ X is a given constant.
It is well known that, in various modelling, equations coupled with nonlocal condi-

tions give better results than those with local conditions. Also, in [2, 10, 11, 31], the 
authors studied some classes of nonlocal initial value problems for dynamic equations. 
Motivated by the work of the above papers, we next discuss the existence of solutions 
of the dynamic first-order nonlocal initial value problem

where � ∶ C (I,X) → X is continuous. Here, C (I,X) denotes the family of continuous 
functions from I  to X. In (1) and (2), x is the unknown function to be found, x� represents 
the delta derivative of x, x� = x◦� , f ∶ I × X → X may be a nonlinear function, p ∶ I → ℝ 
is regressive and rd-continuous, X is a Banach space, and I� = I ⧵ (�(sup I), sup I] if 
sup I < ∞ otherwise I� = I .

In the literature, several methods have been employed to study the existence of solu-
tions to dynamic equations on time scales. The approach of using fixed point theory is 
well known, for example, see [9, 11, 26, 27, 32, 33]. Also, the concept of measure of 
noncompactness has been successfully used to study the problem of existence of solu-
tions for various integral, differential, and difference equations. Some of the related 
work can be observed in [13–16, 25, 28, 30]. The measure of noncompactness associ-
ates numbers to sets in such a way that compact sets all get the measure 0, and other 
sets get measures that are bigger according to “how far”  they are removed from com-
pactness. Darbo, in [12], first implemented the measure of noncompactness to general-
ize the Banach fixed point theorem for Banach spaces. The main advantage of using 
the measure of noncompactness is that the compactness of the domain of the operator 
has been relaxed to obtain the fixed point of an operator. In this paper, we will apply 
the Sadovskiĭ and Mönch fixed point theorems with the measure of noncompactness to 
prove the existence of solutions of problems (1) and (2). The class of equations in (1) 
and (2) is more general, and it can include several previously studied problems as spe-
cial cases, [2, 9, 21, 33] to mention a few.

The paper is structured as follows. Section 2 comprises some fundamental defini-
tions and results to follow the paper. Section  3 deals with our main results of exist-
ence of solutions. In Sect. 4, we provide some new examples to illustrate our results. 
Finally, Sect. 5 contains concluding remarks and some further research directions.

(1)
{

x� + p(t)x� = f (t, x), t ∈ I
� ;

x(0) = A,

(2)
{

x� + p(t)x� = f (t, x), t ∈ I
� ;

x(0) = �(x),
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2  Preliminaries

In this section, we set forth some fundamental definitions and results needed for our subse-
quent discussion. We assume that the reader of this paper is familiar with basic concepts of 
time scales calculus, and for a review of the topic, we refer to [6, 7]. A time scale, denoted 
by �  , is a nonempty closed subset of ℝ . We assume that 0 ∈ �  . For T ∈ �  with 0 < T < ∞ , 
the time scale interval I  is defined by I = [0,T]

�
∶= [0,T] ∩ � = {t ∈ � ∶ 0 ≤ t ≤ T}.

Definition 1 (See [6, Definition 1.58]) A function x ∶ � → X is said to be rd-continu-
ous if it is continuous at every right-dense points in �  and its left sided limits exist at left 
dense points in �  . The notation Crd(� ,X) denotes the set of all rd-continuous functions 
x ∶ � → X.

Definition 2 (See [19, Definition 5]) A function f ∶ � × X → X is said to be rd-continu-
ous on � × X if f (⋅, x) is rd-continuous on �  for each fixed x ∈ X and f (t, ⋅) is continuous 
on X for each fixed t ∈ �  . The notation Crd(� × X,X) denotes the set of all rd-continuous 
functions f ∶ � × X → X.

Definition 3 (See [6, Definition 2.25]) A function p ∶ 𝕋 → ℝ is said to be regressive if 
1 + �(t)p(t) ≠ 0 for all t ∈ �

� , where the graininess function � ∶ � → [0,∞) is defined 
by �(t) ∶= �(t) − t . The notation R(𝕋 ,ℝ) denotes the set of all regressive functions 
p ∶ 𝕋 → ℝ.

Definition 4 (See [6, Definition 2.30]) For a regressive function p ∶ 𝕋 → ℝ and t0 ∈ �  , 
the exponential function ep(⋅, t0) on the time scale �  is defined as the unique solution of the 
initial value dynamic problem

For p, q ∈ R(𝕋 ,ℝ) , we define

Some fundamental properties of the exponential function are stated below.

Theorem 1 (See [6, Theorem 2.36]) Assume that p, q ∶ 𝕋 → ℝ are regressive and rd-con-
tinuous. Then the following hold. 

 (i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
 (ii) ep(�(t), s) = (1 + �(t)p(t))ep(t, s);
 (iii) 1∕ep(t, s) = e⊖p(t, s);
 (iv) ep(t, s) = 1∕ep(s, t);
 (v) ep(t, s)ep(s, r) = ep(t, r);
 (vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
 (vii) ep(t, s)∕eq(t, s) = ep⊖q(t, s).

Throughout the paper, we denote

x�(t) = p(t)x, x(t0) = 1, t ∈ �
� .

p⊕ q ∶= p + q + 𝜇pq, ⊖p ∶=
−p

1 + 𝜇p
, p⊖ q ∶= p⊕ (⊖q).
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Let (X, ‖ ⋅ ‖X) be a given Banach space. By C (I,X) , we denote the family of all continuous 
functions from I  into X, which is a Banach space coupled with the norm ‖ ⋅ ‖ defined as

Definition 5 (See [35, Definition 11.1]) Let M be a bounded subset of a Banach space 
X. The Kuratowski measure of noncompactness of M, �(M) , is defined to be the infimum 
of all 𝜀 > 0 with the property that M can be covered by finitely many sets, each of whose 
diameter is less than or equal to � . That is,

We list some properties of the measure of noncompactness.

Theorem  2 (See [35, Propositon 11.3]) Assume that A and B are bounded subsets of a 
Banach space X and � is the measure of noncompactness. Then we have the following. 

 (i) If A ⊂ B , then �(A) ≤ �(B);
 (ii) �(A) = �(A) , where A denotes the closure of A;
 (iii) �(A) = 0 if and only if A is relatively compact;
 (iv) �(A ∪ B) = max{�(A),�(B)};
 (v) �(�A) = |�|�(A) (� ∈ ℝ);
 (vi) �(A + B) ≤ �(A) + �(B);
 (vii) �( convA) = �(A) , where conv (A) denotes the convex extension of A;
 (viii) �(A) ≤ diam(A).

The next lemma from [1] is stated in the context of time scales.

Lemma 1 (See [21, Lemma 2.7]) Let H ⊂ C (I,X) be a family of strongly equicontinuous 
functions. Let H(t) ∶= {h(t) ∈ X ∶ h ∈ H} for t ∈ I  . Then

and the function t ↦ �(H(t)) is continuous, where �C (H) denotes the measure of noncom-
pactness in C (I,X).

Theorem 3 (Mean value theorem [9, Theorem 2.9]) If f ∶ I → X is rd-continuous, then

where J  is an arbitrary subinterval of I  and ��(J) is the Lebesgue delta-measure of J .

E ∶= sup
s,t∈I

|e⊖p(t, s)|.

‖x‖ ∶= sup
t∈I

‖x(t)‖X .

𝜒(M) ∶= inf{𝜀 > 0 ∶ M admits a finite covering by sets of diameter ≤ 𝜀}.

�C (H) = sup
t∈I

�(H(t)),

∫
J

f (t)�t ∈ ��(J) ⋅ conv f (J),



471Dynamic Local and Nonlocal Initial Value Problems in Banach…

1 3

Definition 6 (See [35, Definition 11.6]) Let X be a Banach space. A mapping F ∶ X → X 
is said to be condensing if and only if F is bounded and continuous, and 𝜒(F(B)) < 𝜒(B) 
for all bounded sets B in X with 𝜒(B) > 0 , where � is the measure of noncompactness.

In the existence result for local initial value problem (1), we apply the fixed point theo-
rem due to Sadovskiĭ, which is stated as follows.

Theorem 4 (See [35, Theorem 11.A]) Let M be a nonempty, closed, bounded, and convex 
subset of a Banach space X. Then the condensing map F ∶ M → M has a fixed point in M.

The following fixed point theorem due to Mönch will be used for the existence result of 
nonlocal initial value problem (2).

Theorem  5 (See [23, Theorem  2.1]) Let D be a closed and convex subset of a Banach 
space X. Let F ∶ D → D be a continuous mapping with the property that there exists x ∈ D 
such that for any countable set C of D satisfying that C = conv (F(C) ∪ {x}) , we have that 
C is a relatively compact D. Then F has a fixed point in D.

3  Main results

The following lemma is proved in [8, Lemma 3.1], which establishes the equivalence of 
dynamic problem (1) and a delta integral equation.

Lemma 2 Let A ∈ X , p ∈ R(I,X) . Assume that f ∈ Crd(I × X,X) . Then, x is a solution of 
the dynamic problem (1) if and only if x satisfies the integral equation

We can state a similar lemma for dynamic problem (2) as follows.

Lemma 3 Let � ∶ C (I,X) → X be continuous and p ∈ R(I,X) . Assume that 
f ∈ Crd(I × X,X) . Then, x is a solution of the dynamic problem (2) if and only if x satisfies 
the integral equation

In the following theorem, we obtain the existence of solutions of local initial value prob-
lem (1) applying Theorem 4.

Theorem  6 Consider the dynamic problem (1). Let f ∶ I × X → X be rd-continuous. 
Assume that the following hypotheses are satisfied. 

(H1)   There exists a positive constant N such that  

(3)x(t) = e⊖p(t, 0)A + ∫
t

0

e⊖p(t, s)f (s, x(s))𝛥s.

(4)x(t) = e⊖p(t, 0)𝛷(x) + ∫
t

0

e⊖p(t, s)f (s, x(s))𝛥s.
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 for all t ∈ I  and each u ∈ X.

(H2)  There exists an rd-continuous function L ∶ I ×ℝ
+
→ ℝ

+ such that for each con-
tinuous function u ∶ ℝ

+
→ ℝ

+ , L(⋅, u(⋅)) is continuous on I  and ∫ T

0
L(s, v)𝛥s < v 

for each v > 0.
(H3)  For any compact subinterval J  of I  and each nonempty bounded subset W of X, 

and for all t ∈ I  , we have 

 Then the local initial value problem (1) has at least one solution on I  provided ENT < 1.

Proof Let r > 0 be such that

and consider the closed ball

The set Br is a bounded, closed, and convex subset of C (I,X) . We see that the set Br is an 
equicontinuous subset of C (I,X) . To this end, let t�, t�� ∈ I  with t′ ≤ t′′ . Then, from (3), we 
have

(5)‖f (t, u)‖X ≤ N(1 + ‖u‖X)

𝜒(e⊖p(t,J)f (J ×W)) ≤ sup
s∈J

L(s,𝜒(W)).

(6)
E‖A‖X + ENT

1 − ENT
≤ r

Br ∶=
�
x ∈ C (I,X) ∶ ‖x‖ ≤ r

�
.

‖x(t��) − x(t�)‖X
=
�����
e⊖p(t

��
, 0)A + �

t��

0

e⊖p(t
��
, s)f (s, x(s))𝛥s − e⊖p(t

�
, 0)A

−�
t�

0

e⊖p(t
�
, s)f (s, x(s))𝛥s

�����X
≤ �e⊖p(t

��
, 0) − e⊖p(t

�
, 0)�‖A‖X

+
������

t��

0

e⊖p(t
��
, s)f (s, x(s))𝛥s − �

t�

0

e⊖p(t
�
, s)f (s, x(s))𝛥s

�����X
= �e⊖p(t

��
, 0) − e⊖p(t

�
, 0)�‖A‖X +

�����
e⊖p(t

��
, 0)�

t�

0

ep(s, 0)f (s, x(s))𝛥s

+e⊖p(t
��
, 0)�

t��

t�
ep(s, 0)f (s, x(s))𝛥s − e⊖p(t

�
, 0)�

t�

0

ep(s, 0)f (s, x(s))𝛥s
�����X

≤ �e⊖p(t
��
, 0) − e⊖p(t

�
, 0)�‖A‖X

+ �e⊖p(t
��
, 0) − e⊖p(t

�
, 0)��

t�

0

�ep(s, 0)�‖f (s, x(s))‖X𝛥s

+ �e⊖p(t
��
, 0)��

t��

t�
�ep(s, 0)�‖f (s, x(s))‖X𝛥s.
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A similar inequality is obtained for t′′ ≤ t′ . Since e⊖p(⋅, 0) is continuous, the right-hand 
side of the above inequality tends to zero as t�� − t� → 0 . Thus, Br is equicontinuous. Now, 
we define a mapping F ∶ Br → C (I,X) by

Let x ∈ Br . Then, for t ∈ I  , we can write

Thus, F(Br) is bounded. Also, equicontinuity of F(Br) can be verified similarly to that of 
Br . Hence F(Br) ⊆ Br and F ∶ Br → Br is a well-defined mapping. Next, we show that 
F ∶ Br → Br is continuous. Let {xn} be a sequence of elements in Br such that xn → x in Br . 
Then, for t ∈ I  , we compute

By the continuity of f, we have ‖F(xn)(t) − F(x)(t)‖X → 0 as n → ∞ . This shows that the 
mapping F ∶ Br → Br is continuous. Now, let D be a nonempty strongly equicontinu-
ous subset of Br . Then, by Lemma 1, we see that the map t ↦ �(D(t)) is continuous on 
I  . Since Br is bounded, D is also bounded. Let � be a real number such that 0 < 𝜏 ≤ T  . 
By hypothesis (H2 ), (t, s) ↦ L(t,�(D(s))) is continuous for (t, s) ∈ I ×ℝ

+ . Therefore, 
for given 𝜀 > 0 , there exists 𝛿 > 0 such that for t�, t�� ∈ [0, �]

�
 with |t� − t��| < 𝛿 , we have 

|L(t�,𝜒(D(s))) − L(t��,𝜒(D(s)))| < 𝜀 . Define Ii ∶= [ti−1, ti]� and

for i = 1, 2,… , n , where n ∈ ℕ and

(7)F(x)(t) ∶= e⊖p(t, 0)A + ∫
t

0

e⊖p(t, s)f (s, x(s))𝛥s.

‖F(x)(t)‖X =
�����
e⊖p(t, 0)A + �

t

0

e⊖p(t, s)f (s, x(s))𝛥s
�����X

≤ �e⊖p(t, 0)�‖A‖X + �
t

0

�e⊖p(t, s)�‖f (s, x(s))‖X𝛥s

≤ E‖A‖X + E �
t

0

‖f (s, x(s))‖X𝛥s

≤ E‖A‖X + E �
t

0

N(1 + ‖x‖X)𝛥s
≤ E‖A‖X + EN(1 + r)T

(6)≤r.

‖F(xn)(t) − F(x)(t)‖X =
����e⊖p(t, 0)A + �

t

0

e⊖p(t, s)f (s, xn(s))𝛥s

− e⊖p(t, 0)A − �
t

0

e⊖p(t, s)f (s, x(s))𝛥s
����X

=
�����

t

0

e⊖p(t, s)f (s, xn(s))𝛥s − �
t

0

e⊖p(t, s)f (s, x(s))𝛥s
����X

≤�
t

0

�e⊖p(t, s)�‖f (s, xn(s)) − f (s, x(s))‖X𝛥s.

Wi ∶=
⋃
s∈Ii

D(s)



474 S. Tikare et al.

1 3

If ti = ti−1 for some i, 1 ≤ i ≤ n , then we set ti+1 = inf{s ∈ � ∶ s > ti} . Now, by Theorem 3, 
we see that

Hence, for � ∈ I ,

By hypothesis (H3 ), we can write

Let u ∈ Ii be such that L(u,�(Wi)) = sup
s∈Ii

L(s,�(Wi)) , where

Then, we obtain

t
i
∶=

⎧
⎪⎨⎪⎩

0 if i = 0,

𝜏 if i = n,

sup{s ∈ [0, 𝜏]
�
∶ 0 < s − t

i−1 < 𝛿} if i = 1, 2,… , n − 1.

∫
𝜏

0

e⊖p(𝜏, s)f (s, x(s))𝛥s ∈

n∑
i=1

𝜇𝛥(Ii) conv (e⊖p(𝜏, s)f (s, x(s)) ∶ s ∈ Ii)

⊂

n∑
i=1

𝜇𝛥(Ii) conv (e⊖p(𝜏, Ii)f (Ii ×Wi)) for x ∈ D.

𝜒(F[D](𝜏)) = 𝜒

{
e⊖p(𝜏, 0)A + �

𝜏

0

e⊖p(𝜏, s)f (s, x(s))𝛥s ∶ x ∈ D

}

≤ 𝜒(e⊖p(𝜏, 0)A) + 𝜒

{
�

𝜏

0

e⊖p(𝜏, s)f (s, x(s))𝛥s ∶ x ∈ D

}

= 𝜒

{
�

𝜏

0

e⊖p(𝜏, s)f (s, x(s))𝛥s ∶ x ∈ D

}

= 𝜒

(
�

𝜏

0

e⊖p(𝜏, s)f (s,D(s))𝛥s

)

≤ 𝜒

(
n∑
i=1

𝜇𝛥(Ii) conv (e⊖p(𝜏, Ii)f (Ii ×Wi))

)

≤
n∑
i=1

|𝜇𝛥(Ii)|𝜒( conv (e⊖p(𝜏, Ii)f (Ii ×Wi))).

�(F[D](�)) ≤
n∑
i=1

��(Ii) sup
s∈Ii

L(s,�(Wi)).

Wi =
⋃
u∈Ii

D(u).
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Since 𝜀 > 0 is arbitrary, we obtain

Therefore,

But, from hypothesis (H2 ), we have

This yields

By Lemma 1, we can write

for any nonempty bounded subset D of Br with 𝜒C (D) > 0 . Thus, F is a condensing map 
according to Definition 6, and by Theorem 4, we can conclude that F has at least one fixed 
point in Br . This completes the proof.   ◻

Remark 1 Theorem 6 coincides with the results given in [21] with T = ∞ and p(t) ≡ 0.

As an immediate result of Theorem 6, we can obtain the following corollary.

�(F[D](�)) ≤
n∑
i=1

��(Ii) L(ui,�(Wi))

=

n∑
i=1

�
ti

ti−1

L(ui,�(Wi))�s

=

n∑
i=1

�
ti

ti−1

(L(ui,�(Wi)) − L(s,�(Wi)) + L
(
s,�(Wi)))�s

≤
n∑
i=1

�
ti

ti−1

(L(s,�(Wi)) + |L(s,�(Wi)) − L(ui,�(Wi))|)�s

≤
n∑
i=1

�
ti

ti−1

L(s,�(Wi))�s + T�.

�(F[D](�)) ≤
n∑
i=1

�
ti

ti−1

L(s,�(Wi))�s

= �
�

0

L(s,�(Wi))�s

≤ �
T

0

L

(
s, sup

u∈Ii

�(D(u))

)
�s.

sup
�∈I

�(F[D](�)) ≤ �
T

0

L

(
s, sup

u∈Ii

�(D(u))

)
�s.

∫
T

0

L

(
s, sup

u∈Ii

𝜒(D(u))

)
𝛥s < sup

u∈Ii

𝜒(D(u)).

sup
𝜏∈I

𝜒(F[D](𝜏)) < sup
u∈Ii

𝜒(D(u)).

𝜒C (F[D]) < 𝜒C (D)
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Corollary 1 Let f ∶ I × X → X be rd-continuous such that there exist two bounded func-
tions �1,�2 ∶ I → ℝ+ with

for all t ∈ I  and u ∈ X . Suppose that the hypotheses ( H2 ) and ( H3 ) hold. Then, the dynamic 
problem (1) has at least one solution if EM2T < 1 for some M2 ∈ ℝ

+.

Proof Since �1,�2 are bounded on I  , there exist M1,M2 ∈ ℝ
+ such that �1(t) ≤ M1 and 

�2(t) ≤ M2 for all t ∈ I  . Then

We choose r > 0 such that 
E‖A‖X + EM1T

1 − EM2T
≤ r . Now, applying Theorem  6, we get the 

required result.   ◻

In the next theorem, we obtain the existence of solutions of nonlocal initial value prob-
lem (2) applying Theorem 5.

Theorem  7 Consider the dynamic problem (2). Let f ∶ I × X → X be rd-continuous. 
Assume that the following hypotheses are satisfied. 

(H4)  There exists a positive constant N such that 

 for all t ∈ I  and each u ∈ X.

(H5)  There exists a positive constant Q such that 

 for each u ∈ X.

(H6)  For each bounded subset Y of X, there exists � ∈ (0, 1∕T) such that 

 for each subinterval J  of I  , and for each bounded subset W of X, we have 

 If EQ + T𝛼 < 1 and EN < 𝛼 , then the dynamic nonlocal initial value problem (2) has at 
least one solution on I .

‖f (t, u)‖X ≤ �1(t) + �2(t)‖u‖X

‖f (t, u)‖X ≤ �1(t) + �2(t)‖u‖X
≤ M2

�
M1

M2

+ ‖u‖X
�
.

(8)‖f (t, u)‖X ≤ N(1 + ‖u‖X)

(9)‖�(u)‖X ≤ Q(1 + ‖u‖X)

𝜒(e⊖p(J,J)f (J, Y)) ≤ 𝛼𝜒(Y)

�(�(W)) ≤ Q�(W).
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Proof Let r > 0 be such that

and consider the closed ball

The set Br is a closed, convex, and equicontinuous subset of C (I,X) . This can be seen from 
the proof of Theorem 6. Define the mapping F ∶ Br → C (I,X) by

Then, by Lemma 3, the fixed points of the map F are the solutions of (2). For x ∈ Br and 
t ∈ I  , from (11), we obtain

This implies that F(x) ∈ Br for all x ∈ Br . Hence, F(Br) ⊂ Br . Therefore, F maps Br into 
itself. Now, let {xn} be a sequence in Br such that ‖xn − x‖ → 0 . Then, for each t ∈ I ,

Since f ∈ Crd(I × X,X) and � is continuous on C (I,X) , we can deduce that 
‖‖F(xn) − F(x)‖‖ → 0 . Thus, F is continuous on Br . Hence, F ∶ Br → Br is a continuous 
map. Now, let R be a countable subset of Br such that R = conv

(
{x} ∪ F(R)

)
 for some 

x ∈ Br . The set R is a countable subset of the bounded and equicontinuous set Br . So, it is 

(10)
EQ + ENT

1 − (EQ + ENT)
≤ r

Br ∶=
�
x ∈ C (I,X) ∶ ‖x‖ ≤ r

�
.

(11)F(x)(t) ∶= e⊖p(t, 0)𝛷(x) + ∫
t

0

e⊖p(t, s)f (s, x(s))𝛥s.

‖F(x)(t)‖X =
�����
e⊖p(t, 0)𝛷(x) + �

t

0

e⊖p(t, s)f (s, x(s))𝛥s
�����X

≤ �e⊖p(t, 0)�‖𝛷(x)‖X +
������

t

0

e⊖p(t, s)f (s, x(s))𝛥s
�����X

≤ EQ(1 + ‖x‖X) + E �
t

0

N(1 + ‖x‖X)𝛥s
≤ EQ(1 + r) + EN(1 + r)t

≤ EQ(1 + r) + EN(1 + r)T

(10)≤ r.

‖F(xn)(t) − F(x)(t)‖X =
�����
e⊖p(t, 0)𝛷(xn) + �

t

0

e⊖p(t, s)f (s, xn(s))𝛥s

− e⊖p(t, 0)𝛷(x) − �
t

0

e⊖p(t, s)f (s, x(s))𝛥s
�����X

≤ �e⊖p(t, 0)�‖𝛷(xn) −𝛷(x)‖X
+ �

t

0

�e⊖p(t, s)�‖f (s, xn(s)) − f (s, x(s))‖X𝛥s
≤ E‖𝛷(xn) −𝛷(x)‖X
+ E �

t

0

‖f (s, xn(s)) − f (s, x(s))‖X𝛥s.
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bounded and equicontinuous. Therefore, the function t ↦ v(t) = �(R(t)) is continuous on 
I  , where R(t) ∶= {v(t) ∈ X ∶ v ∈ R} for t ∈ I  . Let

Then,

By properties of measure of noncompactness � and hypotheses, for each t ∈ I  , we have

That is,

This gives

But, by assumption, 1 − (EQ + T𝛼) > 0 . Hence �(R(t)) = 0 . Therefore, R(t) is relatively 
compact in Br . Now, applying Theorem  5, we conclude that the mapping F has a fixed 
point in Br . Hence, the dynamic initial value problem (2) has a solution in I  .   ◻

Remark 2 Theorem 7 also holds even if the condition ‘ u ∈ X’ in the hypotheses (H4 ) and 
(H5 ) are replaced by the local condition ‘ u ∈ B∗

�
 ’, where

Remark 3 Since 𝜇(t) < T  for all I  , we may replace (5) and (8) by the growth condition

and (9) by the growth condition

F(R)(t) =

{
e⊖p(t, 0)𝛷(x) + ∫

t

0

e⊖p(t, s)f (s, x(s))𝛥s ∶ x ∈ R, t ∈ I

}
.

F(R)(t) = e⊖p(t, 0)𝛷(R(t)) + ∫
t

0

e⊖p(t, s)f (s,R(s))𝛥s.

v(t) ≤ 𝜒(F(R(t)) ∪ {x})

≤ 𝜒(F(R(t)))

≤ 𝜒

(
e⊖p(t, 0)𝛷(R(t)) + �

t

0

e⊖p(t, s)f (s,R(s))𝛥s

)

≤ 𝜒(e⊖p(t, 0)𝛷(R(t))) +

(
�

t

0

e⊖p(t, s)f (s,R(s))𝛥s

)

≤ |e⊖p(t, 0)|𝜒(𝛷(R(t)))

+ 𝜒
(
𝜇𝛥([0, t]� ) conv

(
e⊖p([0, t]� , [0, t]� )f ([0, t]� ,R([0, t]� ))

))

≤ EQ𝜒(R(t)) + t𝜒
(
conv (e⊖p([0, t]� , [0, t]� )f ([0, t]� ,R([0, t]� )))

)

≤ EQ𝜒(R(t)) + t𝜒
(
conv (e⊖p([0, t]� , [0, t]� )f ([0, t]� ,R([0, t]� )))

)

≤ EQ𝜒(R(t)) + T𝜒
(
e⊖p([0, t]� , [0, t]� )f ([0, t]� ,R([0, t]� ))

)

≤ EQ𝜒(R(t)) + T𝛼𝜒(R(t))

= (EQ + T𝛼)𝜒(R(t)).

�(R(t)) ≤ (EQ + T�)�(R(t)).

(1 − (EQ + T�))�(R(t)) ≤ 0.

B∗
𝜌
∶= {x ∈ X ∶ ‖x‖X ≤ 𝜌} for some 𝜌 > 0.

(12)��f (t, u)��X ≤ N
�
1 + �(t) + ‖u‖X

�
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Then, in the proof of Theorem 6, we obtain

and we choose r > 0 such that 
E‖A‖X + ENT + ENT2

1 − ENT
≤ r . In the proof of Theorem 7, we 

obtain

and we choose r > 0 such that (EQ + ENT)(1 + T)

1 − (EQ − ENT)
≤ r . Results similar to Theorem 6 and 

7 can be obtained without much change.

4  Examples

Now, in this section, we provide some new examples to illustrate our results. For simplic-
ity, we assume X = ℝ.

Example 1 Let � ∶= [0, 1] ∪ [2, 3] and consider the dynamic initial value problem

where f (t, x) = 1

2
sin t + xe−t , p(t) = −1 , and A ∈ ℝ . We see that

and hence, the hypothesis (H1 ) holds. Take L(s, er) = s

5
er . Then hypothesis (H2 ) is also 

satisfied because

Take J = [2, 3]
�
 , and W = [0, 1] . Then, we observe that sups∈J L(s,�(W)) =

3

5
 . Now, since 

for � ∈ J  and x ∈ W , f (𝜏, x) < 2 , we obtain

for t ∈ I  , � ∈ J  , and x ∈ W . But 𝜒(e⊖(−1)(I,J) = 0 . Therefore, we get 
𝜒(e⊖(−1)(I,J)f (J ×W) = 0 . Hence the hypothesis (H3 ) also holds. Thus, the conclusion of 
Theorem 6 implies that the problem (14) has at least one solution on [0, 3]

�
.

Example 2 Let �  be any time scale with 𝜇(t) > 0 and consider the dynamic initial value 
problem

(13)‖�(u)‖X ≤ Q(1 + �(t) + ‖u‖X).

‖F(x)(t)‖X ≤ E‖A‖X + EN(1 + T + r)T ,

‖F(x)(t)‖X ≤ EQ(1 + T + r) + EN(1 + T + r)T ,

(14)
{

x� + p(t)x� = f
(
t, x

)
, t ∈ I

� ∶= [0, 3]�
�
;

x(0) = A,

|f (t, x)| ≤ ||||
1

2
sin t

|||| +
||xe−t|| < 1

2
(1 + |x|)

∫
3

0

L(s, er)𝛥s < er.

e⊖(−1)(t, 𝜏)f (𝜏, x) < 2e⊖(−1)(t, 𝜏)

(15)
{

x� + p(t)x� = f
(
t, x

)
, t ∈ �

� ;

x(0) = �(x),
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where f (t, x) = sin
(

1

2 + cos t

)
+ 2x , �(x) =

3x

1 + �(t)
 , and p(t) = 1

�(t)
 . We see that

and hence, the hypothesis (H4 ) holds. Also,

Thus, hypothesis (H5 ) holds. Take W = [1, 2] and Y = [0, 1] . Then we find 
�(�(W)) ≤ 3�(W) . Also, for t ∈ J  and x ∈ Y  , f (t, x) < 3 . Next, for s, t ∈ J  and x ∈ Y ,

But �(eq(J)) = 0 . So 𝜒(e⊖p(J,J)f (J, Y)) ≤ 𝛼 , � ∈ (0, 1∕T) . This yields that the hypothesis 
(H6 ) holds for these f and � . Consequently, Theorem 7 implies that the problem (15) has at 
least one solution on � .

5  Conclusion

The results presented in this paper are essentially new in the context of time scales. Within 
this scope, they form a basis for the study of other dynamic problems such as dynamic 
inclusions and higher-order dynamic equations. By employing the simple useful formula 
x� = x + �x� , the interested reader can acquire various qualitative properties of dynamic 
equations with local as well as nonlocal conditions. Also, as a continuation of this work, 
employing the approach of measure of noncompactness, the other aspects of solutions, like 
monotonicity, periodicity, stability, attractivity, asymptotic behaviour, oscillations, and 
controllability for these dynamic problems can be studied in the near future. The present 
results can also be generalized by replacing the compactness conditions in the hypotheses 
(H3 ) and (H5 ) with general conditions. Of course, one can replace the Kuratowski measure 
of noncompactness � with some other axiomatic measures of noncompactness.
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