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1. Introduction 

Let be given any time scale T , namely, a closed and nonempty subset of the real numbers. In particular, T = Z (all 

integers) and T = R (all real numbers) are two examples of time scales, and so-called dynamic equations on these time 

scales correspond to difference equations and differential equations, respectively. Let T > 0 be fixed and suppose 0 , T ∈ T . In 

this contribution, we study the second-order dynamic Sturm–Liouville BVP (boundary value problem) � 

−(px �) 
�
(t) + q (t ) x σ (t ) = f (t , x σ (t )) , t ∈ [0 , T ] T , 

α1 x (0) − α2 x 
�(0) = 0 , α3 x (σ

2 (T )) + α4 x 
�(σ (T )) = 0 , 

( P f ) 

where 

p ∈ C 
1 ([0 , σ (T )] T , (0 , ∞ )) , q ∈ C([0 , T ] T , [0 , ∞ )) , f ∈ C([0 , T ] T × R , R ) , 

α1 , α2 , α3 , α4 , α1 + α2 ≥ 0 , α1 + α3 , α3 + α4 > 0 . 

During the last thirty years, time scales theory, which was created by Stefan Hilger [23] , unifying discrete and continuous 

analysis, has received considerable attention due to its potential applications in the study of epidemic models, population 

models, finance, stock market, economics [7] , and heat transfer, and it has since then been further developed by numerous 

authors in several fields of study, see, for example, [18,24,25] . 
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Recently, BVPs for dynamic equations on time scales have been extensively studied by many researchers. Various methods 

and techniques have been applied, such as methods of lower and upper solutions, cone-theoretic fixed point theorems, 

variational methods, and coincidence degree theory. Many existence results for solutions and also for positive solutions 

have been established, and we refer to [3,5,6,8,11–15,17,20,26,29–32,34] and the references given there. For example, Sun 

and Li, in [30] , by using fixed point theorems in cones, have obtained some new and general results for the existence of 

single and also of multiple positive solutions for �
−x �∇ (t) + a (t ) f (t , x (t )) = 0 , t ∈ [0 , T ] T , 
βx (0) − γ x �(0) = 0 , αx (η) = x (T ) = 0 , 

where 

β, γ ≥ 0 , β + γ > 0 , η ∈ (0 , ρ(T )) T , 0 < α < 
T 

η
, d = β(T − αη) + γ (1 − α) > 0 . 

In [5,6] , Agarwal et al. have examined the dynamic equations 

−x ��(t) = f (t , x σ (t )) , t ∈ (a, b) T 

and 

−x ��(t) = f (σ (t ) , x σ (t )) , t ∈ (a, b) T 

with Dirichlet boundary conditions, and they have obtained certain existence criteria for single and multiple positive solu- 

tions by utilizing variational techniques. In [26] , Ozkan considered a boundary-value problem involving a dynamic Sturm–

Liouville equation and boundary conditions that depend on a spectral parameter, and he also introduced an operator formu- 

lation of this problem and gave some properties of its eigenfunctions and eigenvalues. Finally, he determined the number 

of eigenvalues for a finite time scale. 

In [8] , under some algebraic assumptions on the nonlinearity, the existence of at least three distinct nonnegative solu- 

tions of a double eigenvalue second-order dynamic Sturm–Liouville boundary value problem has been discussed by utilizing 

a critical point result. The exact collocation of the eigenvalues has been given. Demanding an additional asymptotical be- 

haviour of the data at zero, nontriviality of the solution has been achieved also, under appropriate assumptions. Here, in the 

present paper, we discuss existence of at least one nontrivial solution of the single eigenvalue second-order dynamic Sturm–

Liouville boundary value problem ( P f ), under a certain asymptotical assumption of the nonlinearity at zero ( Theorem 2 ). In 

Theorem 3 , we present an application of Theorem 2 . Moreover, we give some observations and remarks on our results. As a 

special case of our result, we present Theorem 4 , in the case when the function f does not depend on time. Finally, we offer 

Example 1 , in which all hypotheses of Theorem 4 are satisfied. 

2. Preliminaries 

In this paper, we prove the existence of at least one nontrivial solution for ( P f ). The main argument in our results is a 

famous variational principle by Ricceri [28 , Theorem 2.1], in the special form given by Bonanno and Molica Bisci in [16] . 

This principle has been extensively applied to a variety of problems, and we refer to [1,2,9,10,19,21,22] . 

Theorem 1. Assume B is a real and reflexive Banach space. Let be given two Gâteaux-differentiable functionals J 1 , J 2 : B → R so 

that J 1 is strongly continuous, sequentially weakly lower semicontinuous, and coercive in B, and J 2 is sequentially weakly upper 

semicontinuous in B. Define the functional I ν by I ν := J 1 − νJ 2 , ν ∈ R . Moreover, for any s > inf B J 1 , define the function ϕ by 

ϕ(s ) := inf 
x ∈J −1 

1 (−∞ ,s ) 

sup y ∈J −1 
1 (−∞ ,s ) J 2 (y ) − J 2 (x ) 

s − J 1 (x ) 
. 

Then, for any s > inf B J 1 and any ν ∈ 

�
0 , 1 

ϕ(s ) 

�
, the restriction of the functional I ν to J 

−1 
1 (−∞ , s ) has a global minimum, which 

is a critical point (more precisely, a local minimum) of I ν in B. 

Now we introduce some basic definitions and auxiliary results that are used in this paper. We define (see 

[4 , Definition 2.4]) 

L 1 �([ t 1 , t 2 ) T ) := 

�
f : [ t 1 , t 2 ) T → R : 

� 
[ t 1 ,t 2 ) T 

| f (s ) | �s < ∞ 

�
and 

L 2 �([ t 1 , t 2 ) T ) := 

�
f : [ t 1 , t 2 ) T → R : 

� 
[ t 1 ,t 2 ) T 

| f (s ) | 2 �s < ∞ 

�
. 

For f ∈ L 1 
�

([ t 1 , t 2 ) T ) , we introduce for convenience the notation � t 2 

t 1 

f (s )�s = 

� 
[ t 1 ,t 2 ) T 

f (s )�s. 
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When studying ( P f ), the space in our variational setting is given by 

H := H 
1 
�([0 , σ 2 (T )] T ) 

:= 
�

x : [0 , σ 2 (T )] T → R : x ∈ AC [0 , σ 2 (T )] T and x � ∈ L 2 �([0 , σ 2 (T )) T ) 
�
. 

Then H is known (see [33] ) to be a Hilbert space when equipped with the inner product 

(x, y ) H = 

� σ 2 (T ) 

0 
x (t) y (t)�t + 

� σ 2 (T ) 

0 
x �(t) y �(t)�t, 

and we use the notation � · � H to denote the norm that is induced by (·, ·) H . For x, y ∈ H, we introduce 

(x, y ) 0 = 

� σ 2 (T ) 

0 
p(t) x �(t) y �(t)�t + 

� σ (T ) 

0 
q (t) x σ (t) y σ (t)�t + β1 p(0) x (0) y (0) + β2 p(σ (T )) x (σ 2 (T )) y (σ 2 (T )) , 

where 

β1 = 

� α1 

α2 
if α2 > 0 , 

0 if α2 = 0 

(1) 

and 

β2 = 

� α3 

α4 
if α4 > 0 , 

0 if α4 = 0 . 

(2) 

We let � x � 0 be the norm that is induced by ( x , y ) 0 . 

Lemma 1 (See [32 , Lemmas 2.1, 2.2 and 4.2]) . The immersion H �→ C([0 , σ 2 (T )] T ) is compact. If x ∈ H, then 

| x (t) | ≤ √ 
2 max { (σ 2 (T )) 

1 
2 , (σ 2 (T )) −

1 
2 }� x � H for every t ∈ [0 , σ 2 (T )] T . 

If α2 , α4 > 0 or q ( t ) > 0 for t ∈ [0 , T ] T , then for x ∈ H, | x ( t )| ≤ C � x � 0 for every t ∈ [0 , σ 2 (T )] T , where C = min { M 1 , M 2 , M 3 } and 

M 1 = 
√ 

2 max 

� 

1 � 

β1 p(0) 
, 

� 

σ 2 (T ) 

p 

� 

, 

M 2 = 
√ 

2 max 

� 

1 � 

β2 p(0) 
, 

� 

σ 2 (T ) 

p 

� 

, 

M 3 = 
√ 

2 max 

� � 

σ (T ) 

q 
, 

� 

σ 2 (T ) 

p 

� 

, 

and where 

p = min 
t∈ [0 ,σ (T )] T 

p(t) and q = min 
t∈ [0 ,T ] T 

q (t) . 

3. Main results 

We now give our main result for ( P f ). 

Theorem 2. Assume 

sup 

θ> 0 

θ 2 

F θ
> 2 C 2 , where F θ = 

� σ (T ) 

0 
max 
| ξ |≤θ

F (t , ξ )�t . (S) 

Then, ( P f ) has at least one solution in H. 

Proof. We will apply Theorem 1 to ( P f ). Let B = H. Let us introduce the two functionals J 1 , J 2 by 

J 1 (x ) = 
1 

2 
� x � 

2 
0 (3) 

and 

J 2 (x ) = 

� σ (T ) 

0 
F (t , x σ (t ))�t (4) 
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for x ∈ B. We define 

I(x ) = J 1 (x ) − J 2 (x ) for x ∈ B. 

We now show that J 1 and J 2 fulfill the conditions assumed in Theorem 1 . As B is compactly embedded in (C 0 ([0 , T ] T ) , R ) , 

it is easy to see that J 2 is Gâteaux differentiable, and the Gâteaux derivative of J 2 at x ∈ B is J � 2 (x ) ∈ B ∗ given as 

J 
� 

2 (x )(y ) = 

� σ (T ) 

0 
f (t, x σ (t)) y σ (t)�t for all y ∈ B, 

and J 2 is sequentially weakly upper semicontinuous. Additionally, J 1 is also Gâteaux differentiable, and the Gâteaux deriva- 

tive of J 1 at x ∈ B is J � 1 (x ) ∈ B ∗ given as 

J 
� 

1 (x )(y ) = 
d 

d ν
J 1 (x + νy ) 

����
ν=0 

= 
d 

2d ν
� x + νy � 

2 
0 

����
ν=0 

= 
d 

2d ν

�� σ 2 (T ) 

0 
p(t)(x �(t) + νy �(t)) 2 �t + 

� σ (T ) 

0 
q (t)(x σ (t) + νy σ (t)) 2 �t 

+ β1 p(0)(x (0) + νy (0)) 2 + β2 p(σ (T ))(x (σ 2 (T )) + νy (σ 2 (T ))) 2 
�����

ν=0 

= 

� σ 2 (T ) 

0 
p(t)(x �(t) + νy �(t)) y �(t)�t + 

� σ (T ) 

0 
q (t)(x σ (t) + νy σ (t)) y σ (t)�t 

+ β1 p(0)(x (0) + νy (0)) y (0) + β2 p(σ (T ))(x (σ 2 (T )) + νy (σ 2 (T ))) x (σ 2 (T )) 

����
ν=0 

= 

� σ 2 (T ) 

0 
p(t) x �(t) y �(t)�t + 

� σ (T ) 

0 
q (t) x σ (t) y σ (t)�t 

+ β1 p(0) x (0) y (0) + β2 p(σ (T )) x (σ 2 (T )) y (σ 2 (T )) 

for all y ∈ B. Furthermore, we see that J 1 is coercive and sequentially weakly lower semicontinuous. From ( S ), we can find 

θ̄ > 0 satisfying 

θ̄ 2 

F ̄θ
> 2 C 2 . (5) 

Define 

s = 
θ̄ 2 

2 C 2 
. 

If x ∈ J 
−1 
1 (−∞ , s ) , then J 1 (x ) < s, that is, 1 

2 � x � 2 0 < s . Hence, by Lemma 1 , we obtain | x (t) | ≤ C 
√ 

2 s = θ̄ for all t ∈ [0 , σ 2 (T )] T . 
So 

sup 
J 1 (x ) <s 

J 2 (x ) ≤ F ̄θ . 

From the above, since 0 ∈ J 
−1 
1 (−∞ , s ) and J 1 (0) = J 2 (0) = 0 , we get 

ϕ(s ) = inf 
x ∈J −1 

1 (−∞ ,s ) 

( sup y ∈J −1 
1 (−∞ ,s ) J 2 (y )) − J 2 (x ) 

s − J 1 (x ) 

≤
sup x ∈J −1 

1 (−∞ ,s ) J 2 (x ) 

s 

≤ 2 C 2 
F ̄θ

θ̄ 2 
. 

Thus, it follows that 

ϕ(s ) ≤ 2 C 2 
F ̄θ

θ̄2 
. (6) 

Therefore, by (5) and (6) , we get ϕ( s ) < 1. Hence, as 1 ∈ 

�
0 , 1 

ϕ(s ) 

�
, Theorem 1 implies that I has at least one critical point 

(more precisely, local minimum) ˜ x ∈ J 
−1 
1 (−∞ , s ) . Thus, using that the solutions of ( P f ) are exactly the critical points of I , we 

obtain the claim. �
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We remark that Theorem 2 can also be used to ensure the existence of a solution for the parametric problem �
−(px �) 

�
(t) + q (t ) x σ (t ) = ν f (t , x σ (t )) , t ∈ [0 , T ] T , 

α1 x (0) − α2 x 
�(0) = 0 , α3 x (σ 2 (T )) + α4 x 

�(σ (T )) = 0 , 
(P 

f 
ν ) 

where ν > 0 is a parameter. This result about (P 
f 
ν ) is given as follows. 

Theorem 3. For all 

ν ∈ 

�
0 , 

1 

2 C 2 
sup 

θ> 0 

θ2 

F θ

�
, 

(P 
f 
ν ) admits a solution x ν ∈ H. 

Proof. Let ν be in the stated interval. Suppose J 1 and J 2 are as in (3) and (4) . Define 

I ν (x ) = J 1 (x ) − νJ 2 (x ) for all x ∈ H. 

Thus, we obtain the existence of θ̄ > 0 satisfying 

2 C 2 ν < 
θ̄ 2 

F ̄θ
. 

Put 

s = 
θ̄ 2 

2 C 2 
. 

Using the notations from Theorem 2 , we get 

ϕ(s ) ≤ 2 C 2 
F ̄θ

θ̄ 2 
< 

1 

ν
. 

Then, as ν ∈ 

�
0 , 1 

ϕ(s ) 

�
, Theorem 1 implies that I ν has at least one critical point (more precisely, local minimum) 

x ν in J 
−1 

1 (−∞ , s ) , and recalling that critical points of I ν are solutions of (P 
f 
ν ) , we have the conclusion. �

4. Remarks, applications, example 

We give some implications of the above results. 

Remark 1. We remark that, in general, I ν may be unbounded in H. Indeed, e.g., when f (ξ ) = 1 + | ξ | γ −2 ξ for ξ ∈ R with 

γ > 2, for any x ∈ H \ { 0 } and υ ∈ R , we get 

I ν (υx ) = J 1 (υx ) − ν

� σ (T ) 

0 
F (υx (t))�t ≤ υ2 

2 
� x � 

2 
0 − νυ| σ (T ) | − ν

υγ

γ
| σ (T ) | γ → −∞ 

as υ → ∞ . Therefore, the condition [27 , ( I 2 ), Theorem 2.2] is not fulfilled. Hence, we cannot use the direct minimization 

approach to find the critical points of I ν . 

Now we show that I ν associated with (P 
f 
ν ) is, in general, not coercive. For example, when F (ξ ) = | ξ | s for ξ ∈ R with 

s ∈ (2, ∞ ), for any x ∈ H \ { 0 } and υ ∈ R , we get 

I ν (υx ) = J 1 (υx ) − ν

� σ (T ) 

0 
F (υx (t))�t 

≤ υ2 

2 
� x � 

2 
0 − νυ s | σ (T ) | s → −∞ 

as υ → −∞ . 

Remark 2. If in Theorem 2 , f ( t , ξ ) ≥ 0 for almost every (t, ξ ) ∈ [0 , T ] T × R , then ( S ) becomes the simpler form 

sup 
θ> 0 

θ 2 � σ (T ) 
0 F (t, θ )�t 

> 2 C 2 . (S ν ) 

Additionally, if 

lim sup 

θ→∞ 

θ 2 � σ (T ) 
0 F (t, θ )�t 

> 2 C 2 , 

then ( S ν ) automatically holds. 
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Remark 3. Assume θ̄ > 0 is fixed and 

θ̄ 2 

F ̄θ
> 2 C 2 . 

Then the result of Theorem 3 holds with � x ν� 0 ≤ θ̄ . 

Remark 4. If, in Theorem 3 , f ( t , 0) � = 0 for almost every t ∈ [0 , T ] T , then the solution that is obtained is obviously nontrivial. 

But the nontriviality of this solution can also be verified when f (t, 0) = 0 for almost every t ∈ [0 , T ] T , requiring the following 

additional condition at zero: There exist an open set ∅ � = D ⊆ (0 , T ) T and B ⊂ D with positive Lebesgue measure such that 

lim sup 

ξ→ 0 + 

ess inf t∈ B F (t, ξ ) 

| ξ | 2 = ∞ and lim inf 
ξ→ 0 + 

ess inf t∈ D F (t, ξ ) 

| ξ | 2 > −∞ . 

To see this, let 0 < ν̄ < ν∗, where 

ν∗ = 
1 

2 C 2 
sup 

θ> 0 

θ2 

F θ
. 

Then, we obtain the existence of θ̄ > 0 satisfying 

2 C 2 ν̄ < 
θ̄ 2 

F θ
. 

According to Theorem 1 , for each ν ∈ (0 , ν̄ ) , I ν possesses a critical point x ν ∈ J 
−1 
1 (−∞ , s ν ) , where s ν = θ̄2 

2 C 2 
. In particular, x ν

is a global minimum of the restriction of I ν to J 
−1 

1 (−∞ , s ν ) . We proceed to show that x ν is nontrivial. To do so, we prove 

lim sup 

� x �→ 0 + 

J 2 (x ) 

J 1 (x ) 
= ∞ . (7) 

According to our assumptions at zero, we can find ζ > 0 and κ and a sequence { ξn } ⊂ R + converging to zero, satisfying 

lim 
n →∞ 

ess inf t∈ B F (t, ξn ) 

| ξn | 2 = ∞ 

and 

ess inf t∈ D F (t, ξ ) ≥ κ| ξ | 2 for all ξ ∈ [0 , ζ ] . 

Now, take C ⊂ B of positive measure and y ∈ H with 

(i) y ( t ) ∈ [0, 1] for all t ∈ [0 , T ] T , 
(ii) y (t) = 1 ∈ R for all t ∈ C , 

(iii) y (t) = 0 for all t ∈ (0 , T ) T \ D . 

Take Y > 0 and let η > 0 be such that 

Y < 
ηmeas (C) + κ

� 
D \ C | y (t) | 2 �t 

1 
2 � y � 2 

0 

. 

Then, there exists n 0 ∈ N with ξn < ζ and 

ess inf t∈ B F (t, ξn ) ≥ η| ξn | 2 
for all n > n 0 . Next, for all n > n 0 , by using the properties of y (i.e., 0 ≤ ξ n y ( t ) < ζ for large enough n ), we get 

J 2 (ξn y ) 

J 1 (ξn y ) 
= 

� 
C F (t, ξn )�t + 

� 
D \ C F (t , ξn y (t ))�t 

J 1 (ξn y ) 

> 
ηmeas (C) + κ

� 
D \ C | y (t) | 2 �t 

1 
2 � y � 2 

0 

> Y. 

As Y is arbitrary, we obtain 

lim 
n →∞ 

J 2 (ξn y ) 

J 1 (ξn y ) 
= ∞ , 

from which (7) follows. Thus, there exists { w n } ⊂ H that converges strongly to zero, w n ∈ J 
−1 
1 (−∞ , s ) , and 

I ν (w n ) = J 1 (w n ) − νJ 2 (w n ) < 0 . 

As x ν is a global minimum of the restriction of I ν to J 
−1 

1 (−∞ , s ) , we conclude 

I ν (x ν ) < 0 , (8) 
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and thus x ν is nontrivial. 

From (8) , we also get that the map 

(0 , ν∗) � ν �→ I ν (x ν ) (9) 

is negative. Further, we have 

lim 
ν→ 0 + 

� x ν� 0 = 0 . 

In fact, by noting that J 1 is coercive and that for ν ∈ (0, ν∗), x ν ∈ J 
−1 

1 (−∞ , s ) , one obtains existence of a constant L > 0 

with � x ν� ≤ L for all ν ∈ (0, ν∗). This implies existence of M > 0 satisfying ����� σ (T ) 

0 
f (t, x σν (t)) x σν (t)�t 

���� ≤ M� x ν� 0 ≤ ML (10) 

for every ν ∈ (0, ν∗). Since x ν is a critical point of I ν , we obtain I � ν (x ν )(y ) = 0 for any y ∈ B and all ν ∈ (0, ν∗). In particular, 

I � ν (x ν )(x ν ) = 0 , that is, 

J 
� 

1 (x ν )(x ν ) = ν

� σ (T ) 

0 
f (t, x σν (t)) x σν (t)�t (11) 

for every ν ∈ (0, ν∗). Then, since 

0 ≤ � x ν� 
2 
0 ≤ J 

� 
1 (x ν )(x ν ) , 

by using (11) , it is concluded that 

0 ≤ � x ν� 
2 
0 ≤ J 

� 
1 (x ν )(x ν ) ≤ ν

� σ (T ) 

0 
f (t, x σν (t)) x σν (t)�t 

for any ν ∈ (0, ν∗). Letting ν → 0 + , by (10) , we have lim ν→ 0 + � x ν� 0 = 0 . One has 

lim 
ν→ 0 + 

� x ν� ∞ = 0 . (12) 

Finally, we demonstrate that the map 

ν �→ I ν (x ν ) 

strictly decreases in (0, ν∗). To do so, we note that 

I ν (x ) = ν

�
J 1 (x ) 

ν
− J 2 (x ) 

�
for all x ∈ H. (13) 

Fix 0 < ν1 < ν2 < ν∗ and let x ν1 , x ν2 be the global minima of I ν1 , I ν2 , restricted to J 1 (−∞ , s ) . Put 

m νi = 
J 1 (x νi ) 

νi 
− J 2 (x νi ) = inf 

y ∈J −1 
1 (−∞ ,s ) 

�
J 1 (y ) 

νi 
− J 2 (y ) 

�
for i = 1 , 2 . Then, (9) and (13) , since ν > 0, yield 

m νi < 0 for i = 1 , 2 . (14) 

Moreover, 

m ν2 ≤ m ν1 (15) 

due to 0 < ν1 < ν2 . Then by considering (13) –(15) and again since 0 < ν1 < ν2 , we get 

I ν2 (x ν2 ) = ν2 m ν2 ≤ ν2 m ν1 < ν1 m ν1 = I ν1 (x ν1 ) , 

so that the map ν �→ I ν ( x ν ) strictly decreases in ν ∈ (0, ν∗). As ν < ν∗ is arbitrary, ν �→ I ν ( x ν) strictly decreases in (0, ν∗). 

Remark 5. We remark that Theorem 3 is a bifurcation result, i.e., (0,0) belongs to the closure of �
(x ν , ν) ∈ H × (0 , ∞ ) : x ν is a nontrivial solution of (P f ν ) 

�
in H × R . Indeed, we know that 

� x ν� 0 → 0 as ν → 0 . 

Thus, there are two sequences { x j } in H and ν > 0 (here x j = x ν ) such that 

νi → 0 
+ and � x j � 0 → 0 

as j → ∞ . Additionally, we point out that since the map 

(0 , ν∗) � ν �→ I ν (x ν ) 
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is strictly decreasing, for every ν1 , ν2 ∈ (0, ν∗) with ν1 � = ν2 , the solutions x ν1 and x ν2 are different. 

Remark 6. If f ≥ 0, then also the solution in Theorem 3 is nonnegative. To show this, assume x 0 is a nontrivial solution of 

(P 
f 
ν ) . Suppose 

A = { t ∈ (0 , T ] T : x 0 (t) < 0 } 
has positive measure. Define ȳ (t) = min { 0 , x 0 (t) } for t ∈ [0 , T ] T . We obtain ȳ ∈ H and � σ 2 (T ) 

0 
p(t) x �0 (t) ̄y �(t)�t + 

� σ (T ) 

0 
q (t) x σ0 (t) ̄y σ (t)�t + β1 p(0) x 0 (0) ̄y (0) 

+ β2 p(σ (T )) x 0 (σ
2 (T )) ̄y (σ 2 (T )) − ν

� σ (T ) 

0 
f (t, x σ0 (t)) ̄y σ (t)�t = 0 . 

Thus, since f is assumed to be nonnegative, we get 

0 ≤� x 0 � 
2 
A ≤

� σ 2 (T ) 

0 
p(t) x �0 (t) x �0 (t)�t + 

� σ (T ) 

0 
q (t) x σ0 (t) x σ0 (t)�t 

+ β1 p(0) x 0 (0) x 0 (0) + β2 p(σ (T )) x 0 (σ
2 (T )) x 0 (σ

2 (T )) 

= ν

� σ (T ) 

0 
f (t, x σ0 (t)) x σ0 (t)�t ≤ 0 . 

Hence, x 0 = 0 in A , and this is a contradiction. 

The next theorem is concerned with a particular case of our results. 

Theorem 4. Assume f : R → [0 , ∞ ) is continuous and define F (ξ ) = 
� ξ

0 f (s )d s for ξ ∈ R . If 

lim 
ξ→ 0 + 

F (ξ ) 

ξ 2 
= ∞ , 

then, for all 

ν ∈ � = 

�
0 , 

1 

2 σ (T ) C 2 
sup 

θ> 0 

θ 2 

F (θ ) 

�
, 

the problem �
−(px �) �(t) + q (t ) x σ (t ) = ν f (x σ (t)) , t ∈ [0 , T ] T , 
α1 x (0) − α2 x 

�(0) = 0 , α3 x (σ
2 (T )) + α4 x 

�(σ (T )) = 0 

has a nontrivial solution x ν ∈ H satisfying 

lim 
ν→ 0 + 

� x ν� 0 = 0 , 

and 

ν �→ 
1 

2 
� x � 

2 
0 − ν

� σ (T ) 

0 
F (x (t))�t 

is strictly decreasing in � and negative. 

Finally, we offer an example illustrating Theorem 4 . 

Example 1. Let T = 
�

4 
n : n ∈ N 

�
∪ { 0 } and T = 1 . Consider �

−x ��(t) = ν f (x σ (t)) , t ∈ [0 , 1] T , 
x (0) − 2 x �(0) = 0 , x �( 4 

3 ) = 0 , 
(16) 

where 

f (ξ ) = 
3 

64 

�
2 ξ + 2 tan (ξ ) sec 2 (ξ ) + e ξ

�
for all ξ ∈ R . 

Then (16) is in the form of (P f ν ) with 

α1 = 1 , α2 = 2 , α3 = 0 , α4 = 1 , p(t) ≡ 1 , q (t) ≡ 0 . 

We calculate 

β1 = 
1 

2 
, β2 = 0 , σ (1) = 

4 

3 
, σ 2 (1) = 2 , 
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Fig. 1. Graph of θ2 
θ2 + tan 2 (θ )+ e θ −1 . 

p = 1 , q = 0 , M 1 = M 2 = 2 , M 3 = ∞ , C = 2 , 

and 

F (ξ ) = 
3 

64 

�
ξ 2 + tan 

2 (ξ ) + e ξ − 1 
�

for all ξ ∈ R . 

Note that we clearly have (using L’Hôpital’s rule) 

lim 
ξ→ 0 + 

F (ξ ) 

ξ 2 
= ∞ . 

Hence, all assumptions in Theorem 4 are fulfilled. Note that 

sup 

θ> 0 

θ 2 

θ 2 + tan 
2 (θ ) + e θ − 1 

≈ 0 . 347529 ≥ 0 . 3475 

(see also Fig. 1 ) so that, by Theorem 4 , (16) , for all ν ∈ (0, 0.695), has a nontrivial solution x ν ∈ H 1 �([0 , σ 2 (1)] T ) satisfying 

lim 
ν→ 0 + 

� x ν� 0 = 0 , 

and the map 

ν �→ 
1 

2 
� x � 

2 
0 − ν

� 4 
3 

0 
F (x (t))�t 

is strictly decreasing in (0,0.695) and negative. 
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