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This paper introduces the foundational theory of fuzzy calculus on time scales, utilizing granular 
arithmetic operations between fuzzy intervals. These operations are developed based on the 
concept of the horizontal membership function (HMF), which is applied in multidimensional fuzzy 
arithmetic (MFA). Furthermore, the paper explores the existence of a unique solution and the 
continuous dependence of the solution to fuzzy dynamic equations on initial data, employing the 
Banach fixed-point theorem under a new metric for fuzzy functions in time scales involving the 
generalized exponential function. Finally, to highlight the practical significance of these results 
and their potential applications, the paper presents mathematical models relevant to nuclear 
physics and biology.

1. Introduction

Time scales calculus and dynamic equations on time scales, initially proposed by S. Hilger, have garnered significant attention due 
to their applications in various fields in pure and applied mathematics [25,45]. This approach enables the investigation of dynamic 
systems within a unified framework, avoiding the need to study discrete and continuous components separately. Moreover, in practice, 
time scales go beyond merely unifying discrete and continuous analysis; they serve as an effective tool for studying dynamic systems 
on more complex and generalized domains that are neither continuous nor uniformly discrete [21]. The study of discrete systems, 
along with more general time scale systems, has often proven to be a more realistic approach in many cases. This enables a wide range 
of applications across diverse fields such as physics, engineering, and economics, where systems often exhibit both continuous and 
discrete behaviors. For example, quantum calculus [24], a form of time-scale calculus, is employed in quantum mechanics to analyze 
systems that evolve over both continuous and discrete domains. In engineering, networks of dynamic multi-agent systems consist of 
agents whose information exchange is neither purely continuous nor discrete, but instead varies as a function of time (see [15] and 
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references therein). Similarly, in a traffic system, cars move smoothly along roads but are regulated by traffic lights that switch at 
discrete intervals [39]. Classical economic models developed on non-standard time scales show that time-scale analysis can explain 
phenomena in behavioral economics, particularly those involving intertemporal choices [16]. In population dynamics, the discrete 
version of the logistic growth model, known as the Beverton-Holt equation, has been regarded as a more realistic model since the 
seminal work of R. J. H. Beverton and S. J. Holt [5]. For recent advancements regarding the Beverton-Holt equation on time scales, 
readers can refer to the paper [8].

Several studies have explored both the qualitative and quantitative characteristics of solutions to dynamic equations on time 
scales. A study by C. C. Tisdell and Zaidi [41] examined the existence of a unique solution to first-order differential equations using 
the Banach and Schaefer fixed-point theorems. Additionally, successive approximations of the solution and the continuity of solutions 
to dynamic equations with their respective initial values were discussed. Some generalized results for first-order dynamic equations 
were recently introduced by M. Bohner et al. [10,40], and I. L. D. dos Santos [35]. For more in-depth insights into integral and 
functional dynamic equations and some related problems on time scales, readers can refer to the books [6,32].

Example 1.1. Dynamic equations on time scales can be particularly useful in real-world scenarios where processes do not occur 
continuously or solely at discrete moments. Recently, the applications of dynamic equations on time scales in surveying the practical 
models have been demonstrated in the work of R. Agarwal et al. [1] (see also references therein) for the models of population growth 
of plants and electric circuit. Similar to Example 4.3 of [1], we will consider a population of butterflies 𝑋(𝑧) at time 𝑧 in a temperate 
region. The butterfly population grows exponentially according to the differential equation

𝑋′(𝑧) = 𝑝𝑋(𝑧), 𝑋(0) = 𝑋0, (1.1)

during the warm months (e.g., from March to August), where 𝑝 is the growth rate and 𝑋0 represents the initial butterfly population 
size. As the temperature drops in September, the adult butterflies die off, leaving behind dormant pupae. These pupae hatch at the 
beginning of the next warm season, with the population size 𝑋(𝑧) being a fixed multiple (e.g., doubling) of the population at the end 
of the previous warm season. We can model this process using a time scale

𝕋 =
∞⋃

𝑚=0
[2𝑚,2𝑚+ 1], (1.2)

where 𝑧 = 0 corresponds to March 1 of the current year (start of the growing season), 𝑧 = 1 corresponds to September 1 of the current 
year (end of the growing season), 𝑧 = 2 corresponds to March 1 of the next year (start of the next growing season), and so on. In (1.2), 
[2𝑚, 2𝑚 + 1) represents the growing season (March to August) of the year 𝑚, and (2𝑚 + 1) represents the transition point (September 
1) when the population resets and pupae remain dormant until the next growing season. On the time scale 𝕋 , the model (1.1) is 
expressed as the dynamic equation

𝑋Δ(𝑧) = 𝑝𝑋(𝑧), 𝑋(0) = 𝑋0, (1.3)

which governs the growth of the population during the interval [2𝑚, 2𝑚 + 1), where 𝑋Δ(𝑧) means the delta derivative of 𝑋 at 𝑧. 
Furthermore, at the end of the growing season, specifically at 𝑧 = 2𝑚 + 1 (September 1), all adult butterflies die, and the population 
resets to a new value based on the dormant pupae. The population size at the beginning of the next growing season (March 1 of the 
next year, 𝑧 = 2𝑚 + 2) is a multiple of the population at the end of the previous growing season. For this example, let us assume the 
population doubles: 𝑋(2𝑚 +2) = 2𝑋(2𝑚 +1). This relationship is captured by the difference equation: Δ𝑋(2𝑚 +1) = 𝑋(2𝑚 +1), which 
implies that the population doubles at the transition points 𝑧 = 2𝑚 + 1. Consequently, given the initial condition and the dynamic 
equation (1.3), the solution for 𝑋(𝑧) on the time scale 𝕋 is given by the time scale exponential function: 𝑋(𝑧) = 𝑋0𝑒𝑝(⋅, 0), where 
𝑒𝑝(⋅, 0) represents the time scale exponential function that describes the population’s growth behavior during the growing season.

Observe that this model can be applied to various insect populations that exhibit similar seasonal growth patterns. It is particularly 
useful for studying populations in regions with distinct seasons, where environmental factors like temperature play a significant role 
in population dynamics. By using time scales calculus, this model unifies the continuous growth during the active season with the 
discrete population changes between seasons, providing a more realistic representation of the insect population dynamics.

In practical scenarios, dynamic equations designed to model natural phenomena often face uncertainties and vagueness. These 
uncertainties typically arise from imprecise measurements or the inherent indeterminacy of events. To address these challenges, the 
classical theory of dynamic equations has been extended to include frameworks such as interval dynamic equations and fuzzy dynamic 
equations. Applications of uncertain (interval or fuzzy) dynamic equations on time scales span a variety of fields, including control 
theory, optimization, hybrid system modeling (which combines continuous and discrete dynamics), and decision-making in uncertain 
environments. One of the most challenging tasks in the theory of uncertain differential equations (UDEs), including interval and fuzzy 
types, is the development of derivatives and integrals for fuzzy or interval functions, with a primary focus on defining operations 
involving fuzzy numbers or intervals. Consequently, several approaches have been developed to explore uncertain dynamic equations, 
which can be broadly categorized into four key directions: (1) The generalized Hukuhara difference (gH-difference) approach, studied 
by L. Stefanini et al. [38]. (2) The linearly correlated difference approach, explored by E. Esmi et al. [14]. (3) The method utilizing 
the difference between fuzzy intervals through constraint interval arithmetic, presented in the works of W. A. Lodwick [22]. (4) The 
2
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arithmetic (MFA), studied by A. Piegat et al. [33] and M. Mazandarani et al. [27]. These approaches have significantly contributed to 
the ongoing exploration of UDEs and the theory of uncertain dynamic equations. By offering diverse perspectives and methodologies, 
they address the uncertainties in dynamic equations and enhance both the understanding and practical application of these concepts 
in real-world scenarios.

Concerning the first approach, based on the gH-difference, numerous research efforts have been dedicated to the theoretical 
development of uncertain dynamic equations on time scales. Specifically, S. Hong proposed the delta Hukuhara derivative and delta 
integral for multivalued functions on arbitrary time scales in [19], utilizing the Hukuhara difference and investigating the initial 
value problem of set integro-dynamic equations. In [23], V. Lupulescu introduced novel concepts for the delta derivative and the 
Riemann integral of interval functions on arbitrary time scales, involving the gH-difference and the forward jump operator. An interval 
dynamic equation on a time scale was investigated as an application of these concepts. Furthermore, Ch. Vasavi et al. [43] proposed 
generalized differentiability and integrability for fuzzy functions on time scales and explored some of their fundamental properties. In 
a related vein, the authors in [42] presented a comprehensive survey on partial delta derivatives for binary fuzzy functions using the 
gH-difference, applying this concept to analyze the fuzzy transport equation on time scales. Ongoing research has produced numerous 
contributions to time scales calculus involving interval-valued functions (IVFs) and fuzzy functions, as demonstrated in works such as 
[20,32] and the references therein. These studies deepen the understanding of uncertain dynamic equations and the methods used for 
their analysis. However, this approach has several limitations, including the catastrophe of physics laws violation (CPLV), unnatural 
behavior in modeling (UBM), the presence of multiple solutions, and challenges in accurately representing real-world problems. These 
issues have been thoroughly examined by M. Mazandarani et al. [27,28], who identified at least six specific limitations associated 
with the use of the gH-difference approach in investigating uncertain dynamic equations.

The second approach has proven to be more effective and reliable than the first. Significant recent advancements and applications 
in this area are evident in the study of UDEs within a fuzzy framework. Recently, L.C. de Barros et al. introduced delta derivatives 
and integrals involving correlated fuzzy processes on time scales, as detailed in [36]. Using this concept, the authors analyzed fuzzy 
Volterra-type integral equations and established a connection between fuzzy initial value problems and fuzzy Volterra-type integral 
equations with correlated fuzzy processes on hybrid domains. However, we note that this approach can be complex and challenging 
when applied to uncertain dynamic equations.

The third approach utilizes constraint fuzzy arithmetic (CFA), an extension of interval arithmetic that aims to restore the algebraic 
properties of real arithmetic that are often lacking in traditional interval arithmetic. By addressing issues such as the absence of an 
additive inverse, multiplicative inverse, and distributive law, CFA offers a more robust and flexible method. However, this approach 
does not always guarantee that the results of computations will yield fuzzy numbers, as discussed in Section 5 of [34]. To address this 
limitation, Y. Chalco-Cano et al. [12] proposed defining fuzzy arithmetic operations using the generalized single-level CFA approach. 
For recent applications of the CFA method, we recommend the work by M. S. Cecconello et al. [11], in which CFA is applied to study 
the spread of the SARS-CoV-2 virus.

The remaining approach in this field utilizes the HMF concept in MFA to develop fuzzy arithmetic operations. This method has 
proven effective in addressing the limitations of previous approaches. For more details, readers can refer to [28]. Recently, the authors 
in [27] introduced a new concept of fuzzy derivative for continuous-time domains, known as the granular derivative (gr-derivative). 
This approach has shown greater reliability and advantages compared to earlier methods, particularly in addressing the challenges 
associated with the gH-derivative concept. Consequently, this method has opened new avenues for research in fuzzy analysis and fuzzy 
differential equations. Significant contributions have been made in this area, including studies on the existence and uniqueness of 
fuzzy delay differential equations [13], fuzzy optimal control problems [29], stability and controllability in fuzzy singular dynamical 
systems [31], and fuzzy fractional differential equations [3,4,17,30]. However, the development of uncertain calculus on time scales 
and uncertain dynamic equations using granular arithmetic operations has received limited attention. This area remains largely 
unexplored, with no dedicated studies conducted to date. We believe that developing uncertain calculus on time scales using this 
approach presents significant potential for advancing uncertainty theory in dynamic equations. Therefore, the goal of this paper is to 
introduce new concepts of differentiability and integrability for functions on general time scales within a fuzzy environment, based 
on granular arithmetic operations. Our aim is to provide a robust tool for analyzing fuzzy differential equations on time scales. The 
key contributions of this study are summarized as follows:

i) We establish the concept of the limit of fuzzy functions on time scales by employing a granular metric on the fuzzy number set. 
This limit enables us to provide an equivalent definition of the derivative of fuzzy functions using limit-based language.

ii) We introduce the granular delta derivative and granular delta integral for fuzzy functions on time scales, building upon the 
concepts of granular difference and limit. Several key characteristics of these concepts are rigorously demonstrated.

iii) We achieve the existence of a unique solution to fuzzy dynamic equations with initial conditions on an arbitrary time scale. 
Moreover, we investigate the continuity of solutions to fuzzy dynamic equations concerning variations in initial values.

iv) To demonstrate the practical significance of our findings, we present models in nuclear physics and biology that pertain to hybrid 
domains.

The remaining sections of this paper are structured as follows: In Section 2, we revisit crucial definitions and preliminary results from 
the calculus of time scales and fuzzy arithmetic, which are utilized in the subsequent sections. Then, in Section 3, we introduce fuzzy 
calculus on time scales, including the concepts of limit, granular delta differentiability, and the granular integral of fuzzy functions. 
Section 4 is dedicated to investigating the qualitative and quantitative characteristics of fuzzy differential equations on time scales. 
3
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Fig. 1. (a) 𝑧0 is right-scattered and left-dense. (b) 𝑧0 is right-dense and left-scattered. (c) 𝑧0 is dense. (d) 𝑧0 is isolated.

2. Preliminaries

In what follows, we adopt the notations ℤ and ℝ to indicate the families of all integer and real numbers, respectively.

2.1. Time scales essentials

For the reader’s convenience, we provide a brief overview of time scales calculus. Additional details can be found in [9]. Consider 
a time scale denoted as 𝕋 , defined as a nonempty, closed subset of the real numbers ℝ. Examples of such time scales include the 
discrete set ℎℤ with a fixed step size ℎ > 0, the set of all natural numbers ℕ, the entire real number line ℝ, as well as any discrete 
subset or a combination of discrete points and closed intervals.

For a given time scale 𝕋 and a point 𝑧0 ∈ 𝕋 , the forward and backward jump operators 𝜎, 𝜌 ∶ 𝕋 → 𝕋 are respectively defined as

𝜎(𝑧0) ∶= inf{𝑧 ∈ 𝕋 ∣ 𝑧 > 𝑧0} and 𝜌(𝑧0) ∶= sup{𝑧 ∈ 𝕋 ∣ 𝑧 < 𝑧0}.

If sup(𝕋 ) = 𝐶 < ∞, then 𝜎(𝐶) = 𝐶 . A point 𝑧0 ∈ 𝕋 is called right-scattered, left-scattered, right-dense, and left-dense if 𝜎(𝑧0) > 𝑧0, 
𝜌(𝑧0) < 𝑧0, 𝜎(𝑧0) = 𝑧0, and 𝜌(𝑧0) = 𝑧0, respectively. A graininess function is a real function 𝜇 ∶ 𝕋 →ℝ+ given by 𝜇(𝑧0) = 𝜎(𝑧0) − 𝑧0, 
where 𝑧0 ∈ 𝕋 and 𝜇 is considered as the distance between two consecutive points. Observe that the function 𝜇(𝑧) = 0 if 𝑧 ∈ 𝕋 = ℝ
and 𝜇(𝑧) = 1 for 𝑧 ∈ 𝕋 = ℤ. A time scale 𝕋 is said to be isolated if all of elements are both left and right-scattered. Fig. 1 represents 
the forward and backward jump operators in different special cases. In this work, for some 𝑎, 𝑏 ∈ 𝕋 , we denote the time scale interval 
[𝑎, 𝑏]𝕋 by the intersection of the real interval [𝑎, 𝑏] with 𝕋 . Other time scale intervals such as [𝑎, 𝑏)𝕋 , (𝑎, 𝑏]𝕋 , and (𝑎, 𝑏)𝕋 can be defined 
analogously. For a given time scale 𝕋 , we define the kappa set 𝕋 𝜅 of 𝕋 as follows

𝕋 𝜅 = 𝕋 if sup𝕋 =∞ and 𝕋 𝜅 = 𝕋∖(𝜌(sup𝕋 ), sup𝕋 ] if sup𝕋 < ∞.

For a given point 𝑧0 ∈ 𝕋 and any 𝛿 > 0, the neighborhood 𝑈𝕋 (𝑧0, 𝛿) of 𝑧0 on time scale 𝕋 is defined as 𝑈𝕋 (𝑧0, 𝛿) = (𝑧0 − 𝛿, 𝑧0 + 𝛿)𝕋 .

Definition 2.1. Let 𝜙 ∶ 𝕋 →ℝ be a real function and let 𝑧0 ∈ 𝕋 𝜅 be given. Function 𝜙 is said to be delta differentiable (Δ-differentiable) 
at 𝑧0 provided there exists a real number 𝜙Δ(𝑧0) with the property that for any 𝜀 > 0, there is 𝛿 > 0 satisfying that

|𝜙(𝜎(𝑧0)) − 𝜙(𝑧) − 𝜙Δ(𝑧0)(𝜎(𝑧0) − 𝑧)| ≤ 𝜀|𝜎(𝑧0) − 𝑧| for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿). (2.1)

The real number 𝜙Δ(𝑧0) is called the delta derivative (Δ-derivative) of 𝜙 at 𝑧0. If 𝜙 is Δ-differentiable at any 𝑧 ∈ 𝕋 𝜅 , then we say 𝜙 is 
Δ-differentiable on 𝕋 𝜅 .

Some important characteristics of delta differentiability are listed in the below theorem.

Theorem 2.1. (M. Bohner et al. [9]) Consider real functions 𝜙, 𝜓 ∶ 𝕋 →ℝ and 𝑧0 ∈ 𝕋 𝜅 . If 𝜙, 𝜓 are Δ-differentiable at 𝑧0, then

i) so is 𝜙 +𝜓 and (𝜙 +𝜓)Δ(𝑧0) = 𝜙Δ(𝑧0) +𝜓Δ(𝑧0),
ii) so is 𝛽𝜙 and (𝛽𝜙)Δ(𝑧0) = 𝛽𝜙Δ(𝑧0) for any 𝛽 ∈ℝ,

iii) so is 𝜙𝜓 and (𝜙𝜓)Δ(𝑧0) = 𝜙Δ(𝑧0)𝜓(𝑧0) + 𝜙(𝜎(𝑧0))𝜓Δ(𝑧0),
iv) if 𝜓(𝑧) ≠ 0 on [𝑧0, 𝜎(𝑧0)]𝕋 , then 𝜙∕𝜓 is Δ-differentiable at 𝑧0 and

(𝜙∕𝜓)Δ(𝑧0) = [𝜙Δ(𝑧0)𝜓(𝑧0) − 𝜙(𝑧0)𝜓Δ(𝑧0)]∕[𝜓(𝑧0)𝜓(𝜎(𝑧0))].

Let 𝜙 ∶ 𝕋 →ℝ be a real function. If 𝜙 exhibits continuity at right-dense points in 𝕋 and finite left-sided limits exist at left-dense 
points of 𝕋 , then the function 𝜙 is termed as right-dense continuous. The sets of all right-dense continuous functions and continuous 
functions are denoted by 𝐶rd(𝕋 , ℝ) and 𝐶(𝕋 , ℝ), respectively. A real-valued function Ψ ∶ 𝕋 → ℝ is called an antiderivative of 𝜙 if 
ΨΔ(𝑧) = 𝜙(𝑧) for all 𝑧 ∈ 𝕋 𝜅 . We notice that function 𝜙 has an antiderivative if 𝜙 ∈ 𝐶rd(𝕋 , ℝ).
Based on the concept of the antiderivative of 𝜙, the delta integral of 𝜙 is given in the below definition.

Definition 2.2. The delta integral (delta Cauchy integral) of a function 𝜙 ∶ 𝕋 →ℝ on [𝑎, 𝑏]𝕋 , where 𝑎, 𝑏 ∈ 𝕋 , is defined by

𝑏

𝜙(𝑧)Δ𝑧 =Ψ(𝑏) − Ψ(𝑎), (2.2)
4

∫
𝑎
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where Ψ ∶ 𝕋 →ℝ is an antiderivative of 𝜙.

Let 𝜙 ∶ 𝕋 →ℝ be a real function. We say that the function 𝜙 is regressive (or positively regressive) if 1 +𝜇(𝑧)𝜙(𝑧) ≠ 0 (or 1 +𝜇(𝑧)𝜙(𝑧) >
0) for all 𝑧 ∈ 𝕋 𝜅 . We denote (𝕋 , ℝ) and +(𝕋 , ℝ) as the sets of all rd-continuous regressive and positively regressive functions, 
respectively. For 𝑧0 ∈ 𝕋 and 𝜙 ∈(𝕋 , ℝ), the generalized exponential function 𝑒𝜙(⋅, 𝑧0) on 𝕋 is a solution to the initial value problem{

𝑥Δ(𝑧) = 𝜙(𝑧)𝑥(𝑧),
𝑥(𝑧0) = 1.

(2.3)

Explicitly, the exponential functions can be expressed by the formula

𝑒𝜙(𝑧, 𝑧0) =
⎧⎪⎨⎪⎩
exp

(∫ 𝑧

𝑧0
1

𝜇(𝑠)Log(1 + 𝜇(𝑠)𝜙(𝑠))Δ𝑠

)
if 𝜇 > 0,

exp
(∫ 𝑧

𝑧0
𝜙(𝑠)d𝑠

)
if 𝜇 = 0.

(2.4)

2.2. Fundamentals of fuzzy arithmetic

The concepts of the horizontal membership function (HMF) and relative distance measure (RDM) in fuzzy interval analysis and 
multidimensional fuzzy arithmetic (MFA) were initially presented in the pioneering work of A. Piegat et al. [33]. A more compre-

hensive exploration of this concept can be found in the research by M. Mazandarani et al. [27]. This work primarily focuses on 
the development of calculus tools, such as the fuzzy granular derivative and fuzzy granular integral, while also investigating fuzzy 
differential equations within the context of continuous domains. Next, we recall a brief introduction to fuzzy numbers and their level 
sets.

Let 𝜔 ∶ ℝ → [0, 1]. If 𝜔 fulfills conditions including upper semi-continuity, normality, fuzzy convexity, and closure of compact 
support, then 𝜔 is referred to as a fuzzy number on the real line. We represent the family of all fuzzy numbers as ℱℝ . The 𝑟-level set 
of 𝜔 ∈ℱℝ, denoted by [𝜔]𝑟 for all 𝑟 ∈ [0, 1], is given as

[𝜔]𝑟 = {𝑥 ∈ℝ ∣ 𝜔(𝑥) ≥ 𝑟},

where 𝑟 ∈ (0, 1], and [𝜔]0 ∶= {𝑥 ∈ℝ ∣ 𝜔(𝑥) > 0}, where 𝑟 = 0. It is well known that [𝜔]𝑟 is expressed by a compact interval, specifically, 
[𝜔]𝑟 = [𝜔𝑟, 𝜔𝑟], which is also referred to as a fuzzy interval. Additionally, the real functions 𝜔𝑟, 𝜔

𝑟 ∶ [0, 1] →ℝ are known as the left 
and right borders of 𝜔, respectively.

Below, we provide a summary overview of the HMF concept and the essential foundations associated with fuzzy arithmetic 
operations.

Definition 2.3. Let 𝜔 ∶ [𝑐, 𝑑] ⊆ ℝ → [0, 1] be a given fuzzy number with the 𝑟-level set [𝜔]𝑟 = [𝜔𝑟, 𝜔𝑟], 𝑟 ∈ [0, 1]. The HMF of 𝜔 is 
defined as a real mapping 𝜔gr ∶ [0, 1] × [0, 1] → [𝑐, 𝑑] given by

(𝑟, 𝛼𝜔)↦ 𝜔gr (𝑟, 𝛼𝜔) ∶= 𝜔𝑟 + 𝑑([𝜔]𝑟)𝛼𝜔, (2.5)

where 𝑑([𝜔]𝑟) ∶= (𝜔𝑟 − 𝜔𝑟) and 𝑟 ∈ [0, 1] is the membership grade of 𝑥 in the fuzzy set 𝜔 and where 𝛼𝜔 ∈ [0, 1] is called the RDM 
variable, which varies and is constrained between 0 and 1.

Remark 2.1. According to Definition 2.3, while the term “membership function” is part of the phrase “horizontal membership func-

tion”, the real function of two variables 𝜔gr is not a classical membership function, and its values do not represent the degrees or 
grades of elements 𝑥 in the fuzzy set 𝜔. It is noticed that the HMF of 𝜔 is understood deeper through the following information:

• It is a real function of two variables that represents the classical (vertical) membership function. The HMF 𝜔gr is illustrated in a 
three-dimensional space (𝑟, 𝛼𝜔 coordinate).

• Its values 𝜔gr (𝑟, 𝛼𝜔) = 𝑥 ∈ [𝑐, 𝑑] gives an element that is in the fuzzy set 𝜔.

• The notation 𝛼𝜔 is said to be the RDM variable, which is considered a horizontal index allowing us to access or scan the interior 
region of the (classical) membership function.

For convenience, we denote the representation of the fuzzy number 𝜔 in terms of its HMF as (𝜔) = 𝜔gr (𝑟, 𝛼𝜔). Additionally, the 
𝑟-level sets of 𝜔 derived from the HMF are computed using the formula

−1(𝜔gr (𝑟, 𝛼𝜔)) = [𝜔]𝑟 =
[
inf
𝛽≥𝑟

min
𝛼𝜔∈[0,1]

𝜔gr (𝛽, 𝛼𝜔), sup
𝛽≥𝑟

max
𝛼𝜔∈[0,1]

𝜔gr (𝛽, 𝛼𝜔)
]

. (2.6)

Definition 2.4. Consider 𝜔1, 𝜔2 ∈ℱℝ with (𝜔1) and (𝜔2) representing the HMFs of 𝜔1 and 𝜔2, respectively. We denote one of 
the four fundamental operations on ℱℝ by ⊛gr , which include additive, subtractive, multiplicative, and divisive operations. Then, 
5

𝜔1 ⊛gr 𝜔2 is a fuzzy number 𝜔 such that
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(𝜔) =(𝜔1) ∗(𝜔2), (2.7)

where “∗” stands for the four corresponding operations of ⊛gr on ℝ. We assume that 0 ∉ (𝜔2) if ⊛gr is the divisive operation. Note 
that arithmetic operations between fuzzy numbers, conducted using their HMFs, will be referred to as granular operations.

The subtraction of 𝜔1 and 𝜔2 in Definition 2.4 is called the granular difference, denoted by 𝜔1 ⊖gr 𝜔2. To simplify notation, we 
use 𝜔1𝜔2 for granular multiplication instead of 𝜔1 ⊙gr 𝜔2 when no further distinctions are needed.

Remark 2.2. It is observed that granular operations can restore the algebraic properties of real arithmetic that are lacking in tradi-

tional fuzzy arithmetic. In particular, the following properties hold (see [27]): (i) 𝜔1 ⊖gr 𝜔2 = 0̂, where 0̂ ∈ℱℝ means the zero fuzzy 
number. (ii) 𝜔1 ⊖gr 𝜔2 = ⊖gr (𝜔2 ⊖gr 𝜔1). (iii) (𝜔1 ⊕gr 𝜔2) ⊙gr 𝜔3 = 𝜔1 ⊙gr 𝜔3 ⊕gr 𝜔2 ⊙gr 𝜔3, where 𝜔1, 𝜔2, 𝜔3 ∈ℱℝ.

Example 2.1. Let us consider triangular fuzzy numbers 𝜔1 = (1, 2, 4) and 𝜔2 = (0.5, 2.5, 3). For 0 ≤ 𝑟 ≤ 1, the 𝑟-level sets of 𝜔1 and 𝜔2
are given by

[𝜔1]𝑟 = [1 + 𝑟,4 − 2𝑟] and [𝜔2]𝑟 = [0.5 + 2𝑟,3 − 0.5𝑟].

From Definition 2.3, the HMFs of 𝜔1 and 𝜔2 are expressed by (𝜔1) = 𝜔
gr
1 (𝑟, 𝛼𝜔1

) = 1 + 𝑟 + (3 −3𝑟)𝛼𝜔1
and (𝜔2) = 0.5 +2𝑟 + (2.5 −

2.5𝑟)𝛼𝜔2
for all 𝛼𝜔1

, 𝛼𝜔2
∈ [0, 1] (see Fig. 2). From Definition 2.4, the difference 𝜔1 ⊖gr 𝜔2 and the multiplication 𝜔1 ⊙gr 𝜔2 are fuzzy 

numbers with

(𝜔1 ⊖gr 𝜔2) = 0.5 − 𝑟+ (3 − 3𝑟)𝛼𝜔1
− (2.5 − 2.5𝑟)𝛼𝜔2

(2.8)

and

(𝜔1 ⊙gr 𝜔2) = [1 + 𝑟+ (3 − 3𝑟)𝛼𝜔1
][0.5 + 2𝑟+ (2.5 − 2.4𝑟)𝛼𝜔2

], (2.9)

where 𝛼𝜔1
, 𝛼𝜔2

∈ [0, 1]. By using the formula (2.6), we receive the 𝑟-level sets of 𝜔1 ⊖gr 𝜔2 and 𝜔1 ⊙gr 𝜔2, respectively, as

[𝜔1 ⊖gr 𝜔2]𝑟 = [−2 + 1.5𝑟,3.5 − 4𝑟] (2.10)

and

[𝜔1 ⊙gr 𝜔2]𝑟 = [0.5 + 2.5𝑟+ 2𝑟2,12 − 8𝑟+ 𝑟2] (2.11)

for all 𝑟 ∈ [0, 1]. Moreover, the membership functions of 𝜔1 ⊖gr 𝜔2 and 𝜔1 ⊙gr 𝜔2 are

(𝜔1 ⊖gr 𝜔2)(𝑥) =
⎧⎪⎨⎪⎩

2
3𝑥+ 4

3 if 𝑥 ∈ [−2,−0.5],
−1

4𝑥+ 7
8 if 𝑥 ∈ [−0.5,3.5],

0 otherwise

(2.12)

and

(𝜔1 ⊙gr 𝜔2)(𝑥) =
⎧⎪⎨⎪⎩

1
8 (
√
32𝑥+ 9 − 5) if 𝑥 ∈ [0.5,5],

4 −
√

𝑥+ 4 if 𝑥 ∈ [5,12],
0 otherwise.

(2.13)

Figs. 3 and 4 illustrate the membership functions of 𝜔1 , 𝜔2 and their operations.

Remark 2.3. From Definition 2.3, we can see that the mapping  is linear (see [44]). As a result, for any 𝜔1, 𝜔2, 𝜔3, and 𝜔4 ∈ℱℝ, 
the following properties are fulfilled:

i) (𝑎𝜔1 ⊕gr 𝑏𝜔2) = 𝑎(𝜔1) + 𝑏(𝜔2) for all 𝑎, 𝑏 ∈ℝ,

ii) [(𝜔1 ⊕gr 𝜔2) ⊖gr (𝜔3 ⊕gr 𝜔1)] =(𝜔1 ⊖gr 𝜔3) +(𝜔2 ⊖gr 𝜔4).

The relations between two fuzzy numbers 𝜔1 and 𝜔2 are defined as follows.

Definition 2.5. Let 𝜔1, 𝜔2 ∈ ℱℝ, and let (𝜔1) and (𝜔2) be their HMFs, respectively. If (𝜔1) = (𝜔2) for all 𝑟 ∈ [0, 1] and 
𝛼𝜔1

= 𝛼𝜔2
∈ [0, 1], we say that 𝜔1 is equal to 𝜔2. We say that fuzzy numbers 𝜔1 and 𝜔2 are in the relation 𝜔1 ⪯gr 𝜔2 if (𝜔1) ≤(𝜔2)

for all 𝑟 ∈ [0, 1] and 𝛼𝜔1
= 𝛼𝜔2

∈ [0, 1].

The distance between fuzzy numbers based on their HMFs is called a granular metric. This distance is defined as
6

Dgr ∶ℱℝ ×ℱℝ → ℝ+ ∪ {0}
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Fig. 2. The HMFs of the fuzzy numbers 𝜔1 (green) and 𝜔2 (blue).

Fig. 3. The polylines represent the graphs of the membership functions of 𝜔1 (green), 𝜔2 (blue), and 𝜔1 ⊖gr 𝜔2 (red).

(𝜔1,𝜔2) ↦ Dgr (𝜔1,𝜔2) ∶= sup
𝑟∈[0,1]

max
𝛼𝜔1 ,𝛼𝜔2∈[0,1]

||(𝜔1) −(𝜔2)|| (2.14)

for any 𝜔1, 𝜔2 ∈ℱℝ. It is well known that the metric space (ℱℝ, Dgr ) is complete. For any 𝜔1, 𝜔2, 𝜔3, 𝜔4 ∈ℱℝ, the metric Dgr has 
the following properties (see [27]):

i) Dgr (𝜔1, 𝜔2) =Dgr (𝜔2, 𝜔1),
ii) Dgr (𝑐𝜔1, 𝑐𝜔2) = |𝑐|Dgr (𝜔1, 𝜔2), where 𝑐 is a constant,

iii) Dgr (𝜔1 ⊕gr 𝜔2, 𝜔3 ⊕gr 𝜔4) ≤Dgr (𝜔1, 𝜔3) +Dgr (𝜔2, 𝜔4),
iv) Dgr (𝜔1 ⊖𝑔𝑟 𝜔2, 𝜔3 ⊖𝑔𝑟 𝜔4) ≤Dgr (𝜔1, 𝜔3) +Dgr (𝜔2, 𝜔4).

Remark 2.4. Recently, arithmetic operations between fuzzy numbers, explored through the generalized single-level constrained fuzzy 
arithmetic (CFA) and the HMF used in MFA, have been thoroughly analyzed and discussed by N. V. Hoa et al. [18]. As mentioned 
in [18, Subsection 2.2.3], although HMF might seem similar to the increasing constraint function in CFA and the generalized single-

level CFA (see [12, Definition 9-(iii)]), their arithmetic operations are defined differently. Specifically, the HMF approach performs 
arithmetic operations with multiple 𝛼 (RDM variable) parameters for all variables, while the generalized single-level CFA consistently 
7

applies the same constraint parameter across each fuzzy interval involved. As a result, the HMF-based method significantly influences 
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Fig. 4. The curves represent the graphs of the membership functions of 𝜔1 (green), 𝜔2 (blue), and 𝜔1 ⊙gr 𝜔2 (pink).

the calculation outcomes compared to other approaches. For additional clarification on this matter, readers can consult the work by 
N. V. Hoa et al. [18].

3. Time scales calculus for fuzzy functions

In this section, we introduce the extensions of delta differentiability and integrability on time scales through the HMFs of fuzzy 
functions. First, we establish the fundamental concepts of fuzzy calculus on time scales, including fuzzy functions and their limits.

Definition 3.1. A mapping Φ defined on [𝑎, 𝑏]𝕋 with values in ℱℝ is a fuzzy function. If Φ contains 𝑛 distinct fuzzy numbers 𝜔1, … , 𝜔𝑛, 
then the HMF Φgr of Φ at 𝑧 ∈ [𝑎, 𝑏]𝕋 , denoted by (Φ(𝑧)) ∶= Φgr(𝑧, 𝑟, 𝛼Φ), is defined as

Φgr ∶ [𝑎, 𝑏]𝕋 × [0,1] × [0,1]𝑛 →ℝ

(𝑧, 𝑟, 𝛼Φ)↦Φgr(𝑧, 𝑟, 𝛼Φ), (3.1)

where 𝑟 ∈ [0, 1], and 𝛼Φ ∶= (𝛼𝜔1
, … , 𝛼𝜔𝑛

), with 𝛼𝜔1
, … , 𝛼𝜔𝑛

∈ [0, 1], are referred to as the corresponding relative distance measure 
variables.

Example 3.1. For a given ℎ > 0, let us consider the time scale 𝕋 = ℎℤ, and a fuzzy function Φ ∶ [0, 2]ℎℤ →ℱℝ defined by:

Φ(𝑧) = 1̃𝑒−𝑝(𝑧,0)⊕gr 2̃𝑧2, (3.2)

where 1̃ = (0.75, 1, 1.25), 2̃ = (1.5, 2, 2.25) ∈ℱℝ, and 𝑒−𝑝(𝑧, 0) with −𝑝 ∈(𝕋 , ℝ) is a generalized exponential function on arbitrary 
time scales. From Definition 2.3, we derive the HMFs of 1̃ and 2̃ as

(1̃) = 0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1 and (2̃) = 1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2 (3.3)

with 𝛼1, 𝛼2 ∈ [0, 1]. Then, the HMF of Φ(𝑧) is as follows:

Φgr(𝑧, 𝑟, 𝛼Φ) = [0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]𝑒−𝑝(𝑧,0) + [1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2]𝑧2 (3.4)

for all 𝑧 ∈ [0, 2]ℎℤ. Choosing 𝑝 = 1 and ℎ = 0.2, one gets

[Φ(𝑧)]𝑟 = [(0.75 + 0.25𝑟)𝑒−1(𝑧,0) + (1.5 + 0.5𝑟)𝑧2, (1.25 − 0.25𝑟)𝑒−1(𝑧,0) + (2.25 − 0.25𝑟)𝑧2]. (3.5)

The graphs of (3.5) and the HMF of Φ(𝑧) are shown in Figs. 5 and 6, respectively.

Based on the granular distance, we propose and investigate the crucial properties of the limit concept for fuzzy functions on time 
scales. Through this limit concept, the spaces of all continuous and right-dense continuous functions are rigorously defined.

Definition 3.2. We say that a fuzzy function Φ ∶ 𝕋 →ℱℝ has the 𝕋 -limit Λ ∈ℱℝ at 𝑧0 ∈ 𝕋 , which we denote lim
𝑧→𝑧0

Φ(𝑧) = Λ, if for 
8

any sequence {𝑧𝑛}𝑛∈ℕ such that 𝑧𝑛 ≠ 𝑧0, 𝑧𝑛 ∈ 𝕋 and lim
𝑛→∞

𝑧𝑛 = 𝑧0, we have lim
𝑛→∞

Dgr (Φ(𝑧𝑛), Λ) = 0.
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Fig. 5. The 𝑟-level set of Φ(𝑧). The lower and upper borders of [Φ(𝑧)]𝑟 are depicted by the blue-dashed curves and red-dashed curves, and the green star-dashed curve 
is with 𝑟 = 1.

Fig. 6. The graph of Φgr (𝑧, 𝑟, 𝛼Φ) with 𝛼Φ = 0 (the black-crossed grid) and 𝛼Φ = 1 (the blue-stared grid).

Definition 3.3. We say that a fuzzy function Φ ∶ 𝕋 →ℱℝ has the left-sided (right-sided) 𝕋 -limit Λ ∈ℱℝ at 𝑧0 ∈ 𝕋 , which we denote 
lim

𝑧→𝑧−0
Φ(𝑧) = Λ (or lim

𝑧→𝑧+0

Φ(𝑧) = Λ), if for any sequence {𝑧𝑛}𝑛∈ℕ such that 𝑧𝑛 < 𝑧0 (or 𝑧𝑛 > 𝑧0), 𝑧𝑛 ∈ 𝕋 and lim
𝑛→∞

𝑧𝑛 = 𝑧0, we have 

lim
𝑛→∞

Dgr (Φ(𝑧𝑛), Λ) = 0.

It derives from Definitions 3.2 and 3.3 that for a fuzzy function Φ ∶ 𝕋 → ℱℝ and Λ ∈ ℱℝ, lim
𝑧→𝑧0

Φ(𝑧) = Λ iff lim
𝑧→𝑧−0

Φ(𝑧) =

lim
𝑧→𝑧+0

Φ(𝑧) = Λ.

The remainder of this section aims to present the fundamental characteristics of limits, serving as natural extensions of the limits 
associated with classical real-valued functions on time scales.

Theorem 3.1. Let Φ ∶ 𝕋 →ℱℝ and 𝑧0 ∈ 𝕋 . The 𝕋 -limit of Φ at 𝑧0 (provided that it exists) is unique.
9

Proof. The proof follows from Definition 3.2 and the properties of Dgr . □
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Theorem 3.2. Let Φ ∶ 𝕋 →ℱℝ, 𝑧0 ∈ 𝕋 and Λ ∈ℱℝ. Then, lim
𝑧→𝑧0

Φ(𝑧) = Λ iff for every 𝜀 > 0, there exists a 𝛿 > 0 satisfying Dgr (Φ(𝑧), Λ) < 𝜀, 

for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿)∖{𝑧0}.

Proof. Since the sufficient condition is trivial, we will only present a proof for the necessary condition. First, we assume that 𝑧0 ∈ 𝕋
is a dense point. Assuming that lim

𝑧→𝑧0
Φ(𝑧) = Λ, we need to show that for any 𝜀 > 0, there exists a 𝛿 > 0 such that the following holds:

Dgr (Φ(𝑧),Λ) < 𝜀 for any 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿) ⧵ {𝑧0}.

Through a contradiction, let us assume that there exists 𝜀 > 0 such that for every 𝑛 ∈ ℕ, there is 𝑧𝑛 ∈ 𝑈𝕋 (𝑧0, 
1
𝑛
) ⧵ {𝑧0} and 

Dgr (Φ(𝑧𝑛), Λ) ≥ 𝜀. The latter implies that lim
𝑛→∞

𝑧𝑛 = 𝑧0 and lim
𝑛→∞

Dgr (Φ(𝑧𝑛), Λ) ≥ 𝜀, provided it exists. This statement contradicts 
lim

𝑧→𝑧0
Φ(𝑧) = Λ. If 𝑧0 is a scattered point, then the conclusion follows obviously, and the proof is finished. □

Proposition 3.1. Let Φ and Ψ be fuzzy functions on 𝕋 and let 𝛽1, 𝛽2 ∈ℝ and 𝑧0 ∈ 𝕋 . If lim
𝑧→𝑧0

Φ(𝑧) = Λ and lim
𝑧→𝑧0

Ψ(𝑧) = Λ̃, where Λ, Λ̃ ∈ℱℝ, 

then

i) lim
𝑧→𝑧0

[
𝛽1Φ(𝑧)⊕gr 𝛽2Ψ(𝑧)

]
= 𝛽1Λ ⊕gr 𝛽2Λ̃,

ii) lim
𝑧→𝑧0

[
𝛽1Φ(𝑧)⊖gr 𝛽2Ψ(𝑧)

]
= 𝛽1Λ ⊖gr 𝛽2Λ̃.

Proof. We only prove part i) since part ii) follows in a similar manner. Let us assume, without loss of generality, that 𝛽1 and 
𝛽2 are both non-zero. Since lim

𝑧→𝑧0
Φ(𝑧) = Λ and lim

𝑧→𝑧0
Ψ(𝑧) = Λ̃, according to Theorem 3.2, for any 𝜀 > 0, there is a 𝛿 > 0 such that 

Dgr (Φ(𝑧), Λ) < 𝜀

2|𝛽1| and Dgr (Ψ(𝑧), Λ̃) <
𝜀

2|𝛽2| for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿) ⧵ {𝑧0}. Then, one has

Dgr
[
𝛽1Φ(𝑧)⊕gr 𝛽2Ψ(𝑧), 𝛽1Λ⊕gr 𝛽2Λ̃

] ≤Dgr
(
𝛽1Φ(𝑧), 𝛽1Λ

)
+Dgr

(
𝛽2Ψ(𝑧), 𝛽2Λ̃

)
≤ |𝛽1|Dgr (Φ(𝑧),Λ) + |𝛽2|Dgr (Ψ(𝑧), Λ̃)

< |𝛽1| 𝜀

2|𝛽1| + |𝛽2| 𝜀

2|𝛽2| = 𝜀, (3.6)

which implies that lim
𝑧→𝑧0

[
𝛽1Φ(𝑧)⊕gr 𝛽2Ψ(𝑧)

]
= 𝛽1Λ ⊕gr 𝛽2Λ̃. □

Definition 3.4.

(i) A fuzzy function Φ ∶ [𝑎, 𝑏]𝕋 →ℱℝ is called continuous at 𝑧0 ∈ [𝑎, 𝑏]𝕋 if lim
𝑧→𝑧0

Φ(𝑧) =Φ(𝑧0).

(ii) A fuzzy function Φ ∶ [𝑎, 𝑏]𝕋 → ℱℝ is said to be continuous on [𝑎, 𝑏]𝕋 if it is continuous at every 𝑧0 ∈ [𝑎, 𝑏]𝕋 . Denote by 
𝐶([𝑎, 𝑏]𝕋 , ℱℝ) the family of continuous fuzzy functions on [𝑎, 𝑏]𝕋 .

(iii) A function Φ is considered rd-continuous if it exhibits continuity at right-dense points in 𝕋 , and its left-sided limits exist (and are 
finite) at left-dense points in 𝕋 . The collection of all rd-continuous functions Φ ∶ [𝑎, 𝑏]𝕋 →ℱℝ is denoted as 𝐶rd([𝑎, 𝑏]𝕋 , ℱℝ).

(iv) A fuzzy function 𝐹 ∶ [𝑎, 𝑏]𝕋 ×ℱℝ → ℱℝ is said to be rd-continuous if 𝐺(𝑧) ∶= 𝐹 (𝑧, Φ(𝑧)) is rd-continuous for any continuous 
function Φ ∶ [𝑎, 𝑏]𝕋 →ℱℝ.

Now, we are in a position to extend the concepts of delta differentiability and delta integrability to fuzzy functions on time scales.

Definition 3.5. Let 𝕋 be an arbitrary time scale and 𝑧0 ∈ 𝕋 𝜅 , and let Φ ∶ 𝕋 →ℱℝ be a fuzzy function. The granular delta derivative

(Δgr -derivative, for short) of Φ(𝑧) at 𝑧0, provided that it exists, is a fuzzy number denoted by ΦΔgr (𝑧0), satisfying the property that 
for every 𝜀 > 0, there exists a 𝛿 > 0 such that

Dgr

(
Φ(𝜎(𝑧0))⊖gr Φ(𝑧),ΦΔgr (𝑧0)(𝜎(𝑧0) − 𝑧)

) ≤ 𝜀|𝜎(𝑧0) − 𝑧| (3.7)

for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿). The function Φ is called granular delta differentiable (Δgr -differentiable at 𝑧0 ∈ 𝕋 𝜅 if Φ has the granular delta 
derivative at 𝑧0. Furthermore, we say that Φ is granular delta differentiable (Δgr -differentiable, for short) on 𝕋 𝜅 if ΦΔgr (𝑧0) exists for 
every 𝑧0 ∈ 𝕋 𝜅 .

The next theorem, proven in [7], provides the sufficient condition for the Δgr -differentiability of fuzzy functions on time scales. 
It also determines the link between the existence of a fuzzy function’s granular delta derivative and that of its corresponding HMF.

Theorem 3.3. Let 𝕋 be an arbitrary time scale and let 𝑧0 ∈ 𝕋 𝜅 . Then, a fuzzy function Φ ∶ 𝕋 →ℱℝ is Δgr -differentiable at 𝑧0 if and only 
10

if its HMF, (Φ(𝑧)), is Δ-differentiable w.r.t. 𝑧 at 𝑧0. In addition,
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 (
ΦΔgr (𝑧0)

)
=

𝜕Φgr(𝑧0, 𝑟, 𝛼Φ)
Δ𝑧

, (3.8)

where 𝜕Φgr (𝑧0 ,𝑟,𝛼Φ)
Δ𝑧

is the delta partial derivative of Φgr w.r.t. 𝑧 at 𝑧0.

Theorem 3.4. Let 𝕋 be an arbitrary time scale, 𝑧0 ∈ 𝕋 𝜅 , and let Φ ∶ 𝕋 →ℱℝ be a fuzzy function. Then, the assertions below hold:

i) If Φ is Δgr -differentiable at 𝑧0, then Φ is continuous at 𝑧0.

ii) If 𝑧0 is a right-scattered point and Φ is continuous at 𝑧0, then Φ is Δgr -differentiable at 𝑧0 and

ΦΔgr (𝑧0) =
Φ(𝜎(𝑧0))⊖gr Φ(𝑧0)

𝜇(𝑧0)
. (3.9)

iii) If 𝑧0 is a right-dense point, then Φ is Δgr -differentiable at 𝑧0 iff

lim
𝑧→𝑧0

Φ(𝑧0)⊖gr Φ(𝑧)
𝑧0 − 𝑧

exists. Moreover,

ΦΔgr (𝑧0) = lim
𝑧→𝑧0

Φ(𝑧0)⊖gr Φ(𝑧)
𝑧0 − 𝑧

. (3.10)

iv) If Φ is Δgr -differentiable at 𝑧0, then

Φ(𝜎(𝑧0)) = Φ(𝑧0)⊕gr 𝜇(𝑧0)ΦΔgr (𝑧0). (3.11)

Proof. i) Assume that Φ is Δgr -differentiable at 𝑧0, and let Φgr(⋅, 𝑟, 𝛼Φ) represent its HMF. Choosing an arbitrary 𝜀 ∈ (0, 1), we define 

𝜀̄ = 𝜀

1+𝑚+2𝜇(𝑧0)
, where 𝑚 = sup

𝑟

max
𝛼Φ

||||𝜕Φgr(𝑧0, 𝑟, 𝛼Φ)
Δ𝑧

||||. By Definition 3.5, there exists a 𝛿 = 𝜀̄ > 0 such that the following holds:

Dgr

(
Φ(𝜎(𝑧0))⊖gr Φ(𝑧),ΦΔgr (𝑧0)(𝜎(𝑧0) − 𝑧)

) ≤ 𝜀̄|𝜎(𝑧0) − 𝑧| (3.12)

for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿), which yields

sup
𝑟

max
𝛼Φ

||ℙ𝑧
|| ≤ 𝜀̄|𝜎(𝑧0) − 𝑧|, (3.13)

where ℙ𝑧 =Φgr(𝜎(𝑧0), 𝑟, 𝛼Φ) −Φgr(𝑧, 𝑟, 𝛼Φ) −
𝜕Φgr (𝑧0 ,𝑟,𝛼Φ)

Δ𝑧
(𝜎(𝑧0) − 𝑧) for all 𝑟, 𝛼Φ ∈ [0, 1]. Moreover, one has the estimation

||Φgr(𝑧0, 𝑟, 𝛼Φ) −Φgr(𝑧, 𝑟, 𝛼Φ)||
=
||||Φgr(𝑧0, 𝑟, 𝛼Φ) −Φgr(𝑧, 𝑟, 𝛼Φ) +Φgr(𝜎(𝑧0), 𝑟, 𝛼Φ) −

𝜕Φgr(𝑧0, 𝑟, 𝛼Φ)
Δ𝑧

(𝜎(𝑧0) − 𝑧)

+
𝜕Φgr(𝑧0, 𝑟, 𝛼Φ)

Δ𝑧
(𝜎(𝑧0) − 𝑧) − Φgr(𝜎(𝑧0), 𝑟, 𝛼Φ)

||||
≤ |ℙ𝑧|+ ||||Φgr(𝜎(𝑧0), 𝑟, 𝛼Φ) −Φgr(𝑧0, 𝑟, 𝛼Φ) −

𝜕Φgr(𝑧0, 𝑟, 𝛼Φ)
Δ𝑧

(𝜎(𝑧0) − 𝑧)
||||

≤ |ℙ𝑧|+ |ℙ𝑧0
|+𝑚|𝑧− 𝑧0|. (3.14)

Combining (3.13) and (3.14) with the property of the supremum, we obtain

sup
𝑟

max
𝛼Φ

||Φgr(𝑧0, 𝑟, 𝛼Φ) −Φgr(𝑧, 𝑟, 𝛼Φ)|| ≤ sup
𝑟

max
𝛼Φ

|ℙ𝑧|+ sup
𝑟

max
𝛼Φ

|ℙ𝑧0
|+𝑚|𝑧− 𝑧0|

≤ 𝜀̄|𝜎(𝑧0) − 𝑧|+ 𝜀̄|𝜎(𝑧0) − 𝑧0|+𝑚|𝑧− 𝑧0|
≤ 𝜀̄(|𝜎(𝑧0) − 𝑧|+ 𝜇(𝑧0) +𝑚). (3.15)

Therefore, we get Dgr
(
Φ(𝑧0),Φ(𝑧)

) ≤ 𝜀̄(|𝑧0 − 𝑧| + 2𝜇(𝑧0) +𝑚) ≤ 𝜀̄(1 +𝑚+ 2𝜇(𝑧0)) = 𝜀, which yields that Φ is continuous at 𝑧0.

ii) Since Φ is continuous at 𝑧0, it follows from Proposition 3.1 that

lim
𝑧→𝑧0

Φ(𝜎(𝑧0))⊖gr Φ(𝑧)
𝜎(𝑧0) − 𝑧

=
Φ(𝜎(𝑧0))⊖gr Φ(𝑧0)

𝜎(𝑧0) − 𝑧0
=

Φ(𝜎(𝑧0))⊖gr Φ(𝑧0)
𝜇(𝑧0)

. (3.16)

Combining (3.16) with Theorem 3.2, one receives that for an arbitrary 𝜀 > 0, there is a number 𝛿 > 0 satisfying(Φ(𝜎(𝑧0))⊖gr Φ(𝑧) Φ(𝜎(𝑧0))⊖gr Φ(𝑧0)
)

11

Dgr
𝜎(𝑧0) − 𝑧

,
𝜇(𝑧0)

< 𝜀 (3.17)
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for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿) ⧵ {𝑧0}, which is written by

Dgr

(
Φ(𝜎(𝑧0))⊖gr Φ(𝑧),

Φ(𝜎(𝑧0))⊖gr Φ(𝑧0)
𝜇(𝑧0)

(𝜎(𝑧0) − 𝑧)
)

< 𝜀|𝜎(𝑧0) − 𝑧|. (3.18)

It means that Φ is Δgr -differentiable at 𝑧0 and (3.9) holds.

iii) Assume that 𝑧0 is a right-dense point and Φ is Δgr -differentiable at 𝑧0. Then, for any 𝜀 > 0, there exists a 𝛿 > 0 satisfying

Dgr

(Φ(𝑧0)⊖gr Φ(𝑧)
𝑧0 − 𝑧

,ΦΔgr (𝑧0)
)

< 𝜀 for all 𝑧 ∈ 𝑈𝕋 (𝑧0, 𝛿) ⧵ {𝑧0}. (3.19)

Thus, by Theorem 3.2, lim
𝑧→𝑧0

Φ(𝑧0)⊖gr Φ(𝑧)
𝑧0 − 𝑧

exists and ΦΔgr (𝑧0) = lim
𝑧→𝑧0

Φ(𝑧0)⊖gr Φ(𝑧)
𝑧0 − 𝑧

.

iv) If 𝑧0 is right-dense, the above assertion is obvious. Let 𝑧0 be right-scattered and let Φ be Δgr -differentiable at 𝑧0. Then, it yields 
from i) and ii) that

𝜇(𝑧0)ΦΔgr (𝑧0) = Φ(𝜎(𝑧0))⊖gr Φ(𝑧0). (3.20)

Consequently, one implies 𝜇(𝑧0) (
ΦΔgr (𝑧0)

)
= (

Φ(𝜎(𝑧0))
)
− (

Φ(𝑧0)
)
. It follows that

 (
Φ(𝜎(𝑧0))

)
= (

Φ(𝑧0)⊕gr 𝜇(𝑧0)ΦΔgr (𝑧0)
)

. □

Remark 3.1. We examine several special cases involving well-known time scales.

Case 1: Let 𝕋 =ℝ. Then, every 𝑧0 ∈ 𝕋 is dense. Thus, by iii) of Theorem 3.4 for Φ ∶ [𝑎, 𝑏] →ℱℝ and 𝑧0 ∈ [𝑎, 𝑏], one gets

ΦΔgr (𝑧0) = lim
𝓁→0

Φ(𝑧0 + 𝓁)⊖gr Φ(𝑧0)
𝓁

. (3.21)

In this situation, ΦΔgr (𝑧0) is said to be the granular derivative of the fuzzy function Φ at 𝑧0, as introduced in [27].

Case 2: For a given ℎ > 0, let us consider 𝕋 = ℎℤ. Then, by Theorem 3.4-ii), we conclude that Φ ∶ [𝑎, 𝑏]𝕋 →ℱℝ is Δgr -differentiable 
on [𝑎, 𝑏]𝕋 , and

Δgr
ℎ
Φ(𝑧0) =

1
ℎ

[
Φ(𝑧0 + ℎ)⊖gr Φ(𝑧0)

]
(3.22)

for all 𝑧0 ∈ [𝑎, 𝑏]𝕋 . In this case, Δgr
ℎ

is said to be the granular ℎ-difference operator.

Case 3: Let 𝕋 = 𝕋𝑞 = {𝑞𝑛 ∣ 𝑛 ∈ ℕ0} ∪ {0}, 𝑞 ∈ (0, 1). Then, by Theorem 3.4, the granular delta derivative of Φ ∶ 𝕋𝑞 →ℱℝ is

𝐷
gr
𝑞 Φ(𝑧0) =

Φ(𝑞−1𝑧0)⊖gr Φ(𝑧0)
(𝑞−1 − 1)𝑧0

(3.23)

for every 𝑧0 ∈ 𝕋𝑞∖{0}. For 𝑧0 = 0, we have 𝐷gr
𝑞 Φ(0) = lim

𝑛→∞

Φ(𝑞𝑛)⊖gr Φ(0)
𝑞𝑛

. Accordingly, 𝐷gr
𝑞 is called the granular 𝑞-derivative (see 

[44]).

Example 3.2. Let us consider the fuzzy function Φ as given in Example 3.1, namely

Φ(𝑧) = 1̃𝑒−𝑝(𝑧,0)⊕gr 2̃𝑧2, (3.24)

where 1̃ = (0.75, 1, 1.25), 2̃ = (1.5, 2, 2.25) ∈ℱℝ, and −𝑝 ∈(𝕋 , ℝ). Observe that

Φgr(𝑧, 𝑟, 𝛼Φ) = [0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]𝑒−𝑝(𝑧,0) + [1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2]𝑧2 (3.25)

for all 𝑧 ∈ [0, 2]ℎℤ, 𝑟, 𝛼1, 𝛼2 ∈ [0, 1]. By Theorem 3.3,

 (
ΦΔgr (𝑧)

)
= −𝑝[0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]𝑒−𝑝(𝑧,0) + [1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2](2𝑧+ ℎ) (3.26)

for all 𝑧 ∈ [0, 2)ℎℤ, 𝑟, 𝛼1, 𝛼2 ∈ [0, 1]. If ℎ = 0.2 and 𝑝 = 1, then

 (
ΦΔgr (𝑧)

)
= [−0.75 − 0.25𝑟+ (0.5𝑟− 0,5)𝛼1]𝑒−1(𝑧,0) + [1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2](2𝑧+ 0.2). (3.27)

The graph of the HMF of ΦΔgr (𝑧) is shown in Fig. 8. Therefore, by formula (2.6), one obtains

[ΦΔgr (𝑧)]𝑟 = [(−1.25 + 0.25𝑟)𝑒−1(𝑧,0) + (2𝑧+ 0.2)(1.5 + 0.5𝑟), (−0.75 − 0.25𝑟)𝑒−1(𝑧,0) + (2𝑧+ 0.2)(2.25 − 0.25𝑟)] (3.28)
12

for all 𝑧 ∈ [0, 2)ℎℤ. The graph of [ΦΔgr (𝑧)]𝑟 is shown in Fig. 7.
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Fig. 7. The 𝑟-level set of ΦΔgr (𝑧). The lower and upper borders of [ΦΔgr (𝑧)]𝑟, 𝑧 ∈ [0, 2)ℎℤ , are depicted by the blue-dashed curves and red-dashed curves, and the green 
star-dashed curve is for 𝑟 = 1.

Fig. 8. The graph of the HMF of ΦΔgr (𝑧) with 𝛼Φ = 0 (the black-crossed grid) and 𝛼Φ = 1 (the blue-stared grid).

Remark 3.2. According to Theorem 3.3, the properties of Δgr -differentiability of fuzzy functions are entirely inherited from the 
differentiability of real functions on time scales, presented in Theorem 2.1.

Based on the HMF approach for fuzzy numbers, the concept of the granular delta integral for fuzzy functions on time scales is 
defined as follows

Definition 3.6. Let 𝑎, 𝑏 ∈ 𝕋 and 𝑎 < 𝑏. Let Φ ∶ 𝕋 →ℱℝ be a fuzzy function with its HMF Φgr(⋅, 𝑟, 𝛼Φ) ∈ 𝐶rd([𝑎, 𝑏]𝕋 , ℝ) for all 𝑟, 𝛼Φ ∈
[0, 1]. We say that the function Φ is granular delta integrable on [𝑎, 𝑏]𝕋 if there is a fuzzy number 𝑁 such that

 (𝑁) =

𝑏

Φgr(𝑧, 𝑟, 𝛼Φ)Δ𝑧. (3.29)
13

∫
𝑎
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In this case, 𝑁 is said to be the granular delta integral of Φ from 𝑎 to 𝑏, denoted by 
𝑏

∫
𝑎

Φ(𝑧)Δ𝑧.

The following theorem presents some essential properties of the granular delta integral of fuzzy functions on time scales.

Theorem 3.5. Let 𝑎, 𝑏 ∈ 𝕋 and 𝑎 < 𝑏. Assume that Ψ, Φ ∶ 𝕋 →ℱℝ are granular delta integrable. The following assertions hold:

i)

𝑏

∫
𝑎

[𝛽1Ψ(𝑧) ⊛gr 𝛽2Φ(𝑧)]Δ𝑧 = 𝛽1

𝑏

∫
𝑎

Ψ(𝑧)Δ𝑧 ⊛gr 𝛽2

𝑏

∫
𝑎

Φ(𝑧)Δ𝑧, where ⊛gr represents ⊕gr or ⊖gr and 𝛽1, 𝛽2 ∈ℝ,

ii) Dgr

⎛⎜⎜⎝
𝑏

∫
𝑎

Ψ(𝑧)Δ𝑧,

𝑏

∫
𝑎

Φ(𝑧)Δ𝑧

⎞⎟⎟⎠ ≤
𝑏

∫
𝑎

Dgr (Ψ(𝑧),Φ(𝑧))Δ𝑧.

Proof. The property i) is directly obtained from Definition 3.6 and well-known properties of the delta integral on time scales, thus 
the proof is omitted. To verify ii), we assume that Ψ, Φ ∶ 𝕋 →ℱℝ are granular delta integrable. Let Ψgr (𝑧, 𝑟, 𝛼Ψ) and Φgr(𝑧, 𝑟, 𝛼Φ) be 
HMFs of Ψ(𝑧) and Φ(𝑧), respectively. Observe that|||||||

𝑏

∫
𝑎

Ψgr(𝑧, 𝑟, 𝛼Ψ)Δ𝑧−

𝑏

∫
𝑎

Φgr(𝑧, 𝑟, 𝛼Φ)Δ𝑧

||||||| ≤
𝑏

∫
𝑎

||Ψgr(𝑧, 𝑟, 𝛼Ψ) −Φgr(𝑧, 𝑟, 𝛼Φ)||Δ𝑧 (3.30)

for all 𝑟, 𝛼Ψ, 𝛼Φ ∈ [0, 1], which yields that

sup
𝑟∈[0,1]

max
𝛼Ψ ,𝛼Φ∈[0,1]

|||||||
𝑏

∫
𝑎

Ψgr(𝑧, 𝑟, 𝛼Ψ)Δ𝑧−

𝑏

∫
𝑎

Φgr(𝑧, 𝑟, 𝛼Φ)Δ𝑧

||||||| ≤ sup
𝑟∈[0,1]

max
𝛼Ψ ,𝛼Φ∈[0,1]

𝑏

∫
𝑎

||Ψgr(𝑧, 𝑟, 𝛼Ψ) −Φgr(𝑧, 𝑟, 𝛼Φ)||Δ𝑧. (3.31)

Hence,

Dgr

⎛⎜⎜⎝
𝑏

∫
𝑎

Ψ(𝑧)Δ𝑧,

𝑏

∫
𝑎

Φ(𝑧)Δ𝑧

⎞⎟⎟⎠ = sup
𝑟∈[0,1]

max
𝛼Ψ ,𝛼Φ∈[0,1]

|||||||
𝑏

∫
𝑎

Ψgr(𝑧, 𝑟, 𝛼Ψ)Δ𝑧−

𝑏

∫
𝑎

Φgr(𝑧, 𝑟, 𝛼Φ)Δ𝑧

|||||||
≤

𝑏

∫
𝑎

sup
𝑟∈[0,1]

max
𝛼Ψ ,𝛼Φ∈[0,1]

||Ψgr(𝑧, 𝑟, 𝛼Ψ) −Φgr(𝑧, 𝑟, 𝛼Φ)||Δ𝑧

=

𝑏

∫
𝑎

Dgr (Ψ(𝑧),Φ(𝑧))Δ𝑧. □ (3.32)

The next theorem is the generalization of the Newton–Leibniz theorem.

Theorem 3.6. Let Φ ∶ 𝕋 →ℱℝ be granular delta differentiable, and 𝑎, 𝑏 ∈ 𝕋 . If 𝐹 (𝑧) =ΦΔgr (𝑧) is rd-continuous for 𝑧 ∈ 𝕋 𝜅 , then

𝑏

∫
𝑎

𝐹 (𝑧)Δ𝑧 =Φ(𝑏)⊖gr Φ(𝑎). (3.33)

Proof. Since Φ is Δgr -differentiable, one receives from Theorem 3.3 that

 (
ΦΔgr (𝑧)

)
=

𝜕Φgr(𝑧, 𝑟, 𝛼Φ)
Δ𝑧

for all 𝑟, 𝛼Φ ∈ [0,1].

Using Definition 2.2, one has

𝑏

∫
𝑎

𝜕Φgr(𝑧, 𝑟, 𝛼Φ)
Δ𝑧

Δ𝑧 =Φgr(𝑏, 𝑟, 𝛼Φ) −Φgr(𝑎, 𝑟, 𝛼Φ) for all 𝑟, 𝛼Φ ∈ [0,1],
14

i.e.,
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𝑏

∫
𝑎

 (𝐹 (𝑧))Δ𝑧 =Φgr(𝑏, 𝑟, 𝛼Φ) −Φgr(𝑎, 𝑟, 𝛼Φ) for all 𝑟, 𝛼Φ ∈ [0,1].

In addition, it follows from Definition 2.4 that

 (
Φ(𝑏)⊖gr Φ(𝑎)

)
=Φgr(𝑏, 𝑟, 𝛼Φ) −Φgr(𝑎, 𝑟, 𝛼Φ) for all 𝑟, 𝛼Φ ∈ [0,1],

and hence 
𝑏

∫
𝑎

 (𝐹 (𝑧))Δ𝑧 = (
Φ(𝑏)⊖gr Φ(𝑎)

)
. □

Example 3.3. Let us reconsider the fuzzy function Φ ∶ [0, 2]ℎℤ →ℱℝ as given in Example 3.1 with 0 < ℎ < 1. Set 𝐺(𝑧) =ΦΔgr (𝑧) for 
all 𝑧 ∈ [0, 2)ℎℤ. According to Example 3.2, one has

(𝐺(𝑧)) =(ΦΔgr (𝑧)) = −𝑝[0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]𝑒−𝑝(𝑧,0) + [1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2](2𝑧+ ℎ)

for all 𝛼1, 𝛼2 ∈ [0, 1], 𝑧 ∈ [−2, 2)ℎℤ. By Theorem 3.6, one has 
1

∫
0

𝐺(𝑧)Δ𝑧 =Φ (1)⊖gr Φ(0). Indeed, using Definition 2.4, one derives

 (
Φ(1)⊖gr Φ(0)

)
= [0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]𝑒−𝑝(1,0) + 1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2.

From Definition 3.6, we have


⎛⎜⎜⎝

1

∫
0

𝐺(𝑧)Δ𝑧

⎞⎟⎟⎠ =
1

∫
0

(𝐺(𝑧))Δ𝑧

= −𝑝[0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]ℎ

1
ℎ
−1∑

𝑘=0
(1 − 𝑝ℎ)

𝑘ℎ

ℎ + [1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2]ℎ

1
ℎ
−1∑

𝑘=0
(2𝑘ℎ+ ℎ)

= [0.75 + 0.25𝑟+ (0.5 − 0.5𝑟)𝛼1]𝑒−𝑝(1,0) + 1.5 + 0.5𝑟+ (0.75 − 0.75𝑟)𝛼2, (3.34)

which implies that 
⎛⎜⎜⎝

1

∫
0

𝐺(𝑧)Δ𝑧

⎞⎟⎟⎠ = (
Φ(1)⊖gr Φ(0)

)
. Therefore, it follows from Definition 2.5 that 

1

∫
0

𝐺(𝑧)Δ𝑧 =Φ (1)⊖gr Φ(0).

4. Fuzzy dynamic equations on time scales

We consider the initial value problem of fuzzy dynamic equations on an arbitrary time scale 𝕋 in the following form:{
𝑌 Δgr (𝑧) = 𝐹 (𝑧, 𝑌 (𝑧)) for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ,

𝑌 (𝑧0) = 𝑌0 ∈ℱℝ,
(4.1)

where 𝑧0, 𝜆 ∈ 𝕋 , 𝜆 > 𝑧0 is such that 𝑧0 + 𝜆 ∈ 𝕋 ; 𝐹 ∶ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ×ℱℝ →ℱℝ is a fuzzy function.

Let 𝑌 ∶ [𝑧0, 𝑧0 + 𝜆]𝕋 →ℱℝ be a fuzzy function. Then, the function 𝑌 is a solution to (4.1) if it is a Δgr -differentiable function on 
[𝑧0, 𝑧0 + 𝜆]𝜅𝕋 and satisfies (4.1).

Lemma 4.1. Let 𝐹 ∶ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ×ℱℝ →ℱℝ be right-dense continuous. Then, 𝑌 is a solution to problem (4.1) iff 𝑌 satisfies

𝑌 (𝑧) = 𝑌0 ⊕gr

𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠 for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . (4.2)

Proof. Based on Definition 2.5 and Theorem 3.3, we can rewrite the initial value problem (4.1) as{ (
𝑌 Δgr (𝑧)

)
= (𝐹 (𝑧,(𝑌 (𝑧)))) for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ,

 (
𝑌 (𝑧0)

)
= (

𝑌0
)
∈ℱℝ,

(4.3)

i.e., {
𝜕𝑌 gr (𝑧,𝑟,𝛼𝑌 )

Δ𝑧
= 𝐹 gr (𝑧, 𝑌 gr (𝑧, 𝑟, 𝛼𝑌 ), 𝑟, 𝛼𝐹

)
,

15

𝑌 gr (𝑧0, 𝑟, 𝛼𝑌 ) = 𝑌
gr
0 (𝑟, 𝛼𝑌 ),

(4.4)
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for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 and 𝑟, 𝛼𝐹 , 𝛼𝑌 ∈ [0, 1]. By taking the delta integral on both sides of the first equation in (4.4), one gets

𝑧

∫
𝑧0

𝜕𝑌 gr (𝑠, 𝑟, 𝛼𝑌 )
Δ𝑠

Δ𝑠 =

𝑧

∫
𝑧0

𝐹 gr (𝑠, 𝑌 gr (𝑠, 𝑟, 𝛼𝑌 ), 𝑟, 𝛼𝐹

)
Δ𝑠 for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . (4.5)

Then, using the initial condition, we obtain

𝑌 gr (𝑧, 𝑟, 𝛼𝑌 ) = 𝑌 gr (𝑧0, 𝑟, 𝛼𝑌 ) +

𝑧

∫
𝑧0

𝐹 gr (𝑠, 𝑌 gr (𝑠, 𝑟, 𝛼𝑌 ), 𝑟, 𝛼𝐹

)
Δ𝑠 (4.6)

for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 , 𝛼𝑌 , 𝛼𝐹 ∈ [0, 1], which means

 (𝑌 (𝑧)) = (
𝑌0
)
+

⎛⎜⎜⎝
𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠

⎞⎟⎟⎠ . (4.7)

Finally, one can deduce

𝑌 (𝑧) = 𝑌0 ⊕gr

𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠 for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 .

The reverse proof is trivial; thus, the proof is complete. □

Let 𝑝 > 0 be a real constant. Let us consider the Bielecki metric as follows:

D
𝑝
gr (Ψ,Φ) = sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

for all Ψ,Φ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 ,ℱℝ). (4.8)

Lemma 4.2. The space (𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), D
𝑝
gr ) is a complete metric space.

Proof. First, we will verify that D𝑝
gr is a metric. Indeed, for any Ψ, Φ ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), we have D𝑝

gr (Ψ,Φ) ≥ 0 because 

𝑒𝑝(𝑧, 𝑧0) > 0 by assumption. In addition, one observes that sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

= 0 iff Dgr (Ψ(𝑧),Φ(𝑧)) = 0, which implies 

that D𝑝
gr (Ψ(𝑧),Φ(𝑧)) = 0 iff Ψ(𝑧) =Φ(𝑧) for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . Next, one has

D
𝑝
gr (Ψ,Φ) = sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

= sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Φ(𝑧),Ψ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

=D
𝑝
gr (Φ,Ψ)

for any Ψ, Φ ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ). Finally, we will check the triangular inequality. For any Ψ, Φ, Θ ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), we have

D
𝑝
gr (Ψ,Φ) = sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

≤ sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Θ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

+ sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Θ(𝑧),Φ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

=D
𝑝
gr (Ψ,Θ) +D

𝑝
gr (Θ,Φ) . (4.9)

Furthermore, since 𝑒Δ
𝑝
(⋅, 𝑧0) = 𝑝𝑒𝑝(⋅, 𝑧0) > 0, 𝑒𝑝(⋅, 𝑧0) is increasing. For all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 , we have 1 = 𝑒𝑝(𝑧0, 𝑧0) ≤ 𝑒𝑝(𝑧, 𝑧0) ≤ 𝑒𝑝(𝑧0 +

𝜆, 𝑧0), which implies

1 ≥ 1
𝑒𝑝(𝑧, 𝑧0)

≥ 1
𝑒𝑝(𝑧0 + 𝜆, 𝑧0)

.

It yields that

sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧)) ≥ sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧))
𝑒𝑝(𝑧, 𝑧0)

≥ 1
𝑒𝑝(𝑧0 + 𝜆, 𝑧0)

sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧)) .

Therefore, the completeness of the space (𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), D
𝑝
gr ) follows from the completeness of the space (𝐶([𝑧0, 𝑧0 +

0 0
16

𝜆]𝕋 , ℱℝ), Dgr ), where as Dgr (Ψ(𝑧),Φ(𝑧)) = sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧),Φ(𝑧)) for Ψ, Φ ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ). □
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To investigate the existence of a unique solution to the initial value problem (4.1), the following hypotheses are considered.

(A) The fuzzy function 𝐹 ∶ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ×ℱℝ →ℱℝ is rd-continuous.

(B) There exists 𝐿 > 0 such that

Dgr (𝐹 (𝑧,Ψ), 𝐹 (𝑧,Φ)) ≤ 𝐿Dgr (Ψ,Φ) for all Ψ,Φ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 ,ℱℝ).

(C) There exists 𝐿 > 0 such that

Dgr

(
𝐹 (𝑧,Ψ), 0̂)

) ≤ 𝐿[1 +Dgr (Ψ, 0̂)] for all Ψ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 ,ℱℝ).

Let us introduce the norm ‖ ⋅ ‖𝑝
gr as follows

‖Ψ‖𝑝
gr = sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (Ψ(𝑧), 0̂)
𝑒𝑝(𝑧, 𝑧0)

, 𝑝 > 0. (4.10)

Theorem 4.1. Let 𝐹 ∶ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ×ℱℝ →ℱℝ satisfy the conditions (A) and (C). Then problem (4.1) has at least one solution.

Proof. Let us introduce an operator  ∶ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) → 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) defined by

𝑌 ↦  [𝑌 ] (𝑧) = 𝑌0 ⊕gr

𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠 for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . (4.11)

Note that the space 𝐶 with the norm given by (4.10) is a Banach space. Using Schaefer’s theorem, we prove the operator  has a fixed 
point. The proof can be divided into several steps as follows. Step 1: The continuity of  . Let {𝑌𝑛(⋅) ∣ 𝑛 ∈ ℕ} be a sequence satisfying 
that 𝑌𝑛 → 𝑌 in 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ). Then, for each 𝑧 ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), we have

Dgr
([𝑌𝑛](𝑧),[𝑌 ](𝑧)

) ≤Dgr

⎛⎜⎜⎝
𝑧

∫
𝑧0

𝐹
(
𝑠, 𝑌𝑛(𝑠)

)
Δ𝑠,

𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠

⎞⎟⎟⎠
≤

𝑧

∫
𝑧0

Dgr
(
𝐹
(
𝑠, 𝑌𝑛(𝑠)

)
, 𝐹 (𝑠, 𝑌 (𝑠))

)
Δ𝑠

=

𝑧

∫
𝑧0

sup
𝑟

max
𝛼𝑌 ,𝛼𝐹

|||𝐹 gr(𝑠, 𝑌 gr
𝑛 (𝑠, 𝑟, 𝛼𝑌 ), 𝑟, 𝛼𝐹

)
− 𝐹 gr(𝑠, 𝑌 gr (𝑠, 𝑟, 𝛼𝑌 ), 𝑟, 𝛼𝐹

)|||Δ𝑠 → 0, (4.12)

as 𝑛 →∞, which implies the continuity of 𝐹 . Step 2: The map  maps bounded sets into bounded sets in 𝐶([𝑧0, 𝑧0 +𝜆]𝕋 , ℱℝ). It means 
that we need to show that for any 𝜚 > 0 if there exists a positive constant 𝜌 such that for each 𝑌 ∈𝜚 ∶= {𝑌 ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) ∣
Dgr (𝑌 , ̂0) ≤ 𝜚}, then we obtain ‖‖‖[𝑌 ](𝑧)‖‖‖𝑝

gr
≤ 𝜌 for each 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . Indeed, from the hypotheses, one gets

Dgr
([𝑌 ](𝑧), 0̂

)
=Dgr

⎛⎜⎜⎝𝑌0 ⊕gr

𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠, 0̂
⎞⎟⎟⎠

≤Dgr
(
𝑌0, 0̂

)
+

𝑧

∫
𝑧0

Dgr
(
𝐹 (𝑠, 𝑌 (𝑠)) , 0̂

)
Δ𝑠

≤Dgr (𝑌0, 0̂) +

𝑧

∫
𝑧0

𝐿
(
1 +Dgr (𝑌 (𝑠), 0̂)

)
Δ𝑠, (4.13)

which yields that sup𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋
1

𝑒𝑝(𝑧,𝑧0)
Dgr

([𝑌 ](𝑧), ̂0
) ≤ 𝜌 ∶=Dgr (𝑌0, ̂0) +𝐿(1 + 𝜚)𝜆. Step 3: The operator  maps bounded sets into 

equicontinuous sets in 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ). One has

Dgr
([𝑌 ](𝑧1)⊖gr [𝑌 ](𝑧2), 0̂

)
=Dgr

⎛⎜ 𝑧1

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠 ⊖gr

𝑧2

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠, 0̂
⎞⎟
17

⎜⎝∫𝑧0 ∫
𝑧0

⎟⎠
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=Dgr

⎛⎜⎜⎝
𝑧2

∫
𝑧1

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠, 0̂
⎞⎟⎟⎠ ≤

𝑧2

∫
𝑧1

Dgr
(
𝐹 (𝑠, 𝑌 (𝑠)), 0̂

)
Δ𝑠

≤
𝑧2

∫
𝑧1

𝐿
(
1 +Dgr (𝑌 (𝑠), 0̂)

)
Δ𝑠

≤ 𝐿(1 + 𝜚)|𝑧1 − 𝑧2|→ 0 (4.14)

whereas 𝑧1 → 𝑧2. Thus,  is equicontinuous on 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ). Combining Steps 1, 2, and 3 with Arzelà–Ascoli theorem, we 
conclude that the map  ∶ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) → 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) is complete continuous. Step 4: A priori bounds. It requires us 
to show that the set 𝑇 = {𝑌 ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) ∣ 𝑌 = 𝛽𝑌 , 𝛽 ∈ [0, 1)} is bounded. Indeed, for 𝑌 ∈ 𝑇 , we get

sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr
(
𝑌 (𝑧), 0̂

)
= sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋
Dgr (𝛽[𝑌 ](𝑧), 0̂)

= sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr

(
𝑌0 ⊕gr ∫ 𝑧

𝑧0
𝐹
(
𝑠𝑌 (𝑠)

)
Δ𝑠, 0̂

)
𝑒𝐿(𝑧, 𝑧0)

≤ sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

Dgr (𝑌0, 0̂)
𝑒𝐿(𝑧, 𝑧0)

+ sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

∫ 𝑧

𝑧0
𝐿
(
1 +Dgr (𝑌 (𝑠), 0̂)

)
Δ𝑠

𝑒𝐿(𝑧, 𝑧0)

≤Dgr (𝑌0, 0̂) + sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

𝐿(𝑧− 𝑧0) + ∫ 𝑧

𝑧0
𝐿𝑒𝐿(𝑠, 𝑧0)

Dgr (𝑌 (𝑠),0̂)
𝑒𝐿(𝑠,𝑧0)

Δ𝑠

𝑒𝐿(𝑧, 𝑧0)

≤Dgr (𝑌0, 0̂) + sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

𝐿(𝑧− 𝑧0) +
‖‖‖𝑌

‖‖‖𝐿

gr
∫ 𝑧

𝑧0
𝐿𝑒𝐿(𝑠, 𝑧0)Δ𝑠

𝑒𝐿(𝑧, 𝑧0)

≤Dgr (𝑌0, 0̂) + sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

‖‖‖𝑌
‖‖‖𝐿

gr

(
𝑒𝐿(𝑧, 𝑧0) − 1

)
+𝐿(𝑧− 𝑧0)

𝑒𝐿(𝑧, 𝑧0)

=≤Dgr (𝑌0, 0̂) +𝐿𝜆+ ‖‖‖𝑌
‖‖‖𝐿

gr

(
1 − 1

𝑒𝐿(𝑧0 + 𝜆, 𝑧0)

)
. (4.15)

Therefore, ‖‖‖𝑌
‖‖‖𝐿

gr
≤ 𝑒𝐿(𝑧0 + 𝜆, 𝑧0)[𝐿𝜆 +Dgr (𝑌0, ̂0)] which shows that 𝑌 is bounded. By Schaefer’s theorem, we conclude that  has at 

least one fixed point. Hence problem (4.1) also has at least one solution, which completes the proof. □

Theorem 4.2. Let 𝐹 ∶ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 × ℱℝ → ℱℝ satisfy the conditions (A)–(B). Then, there exists a unique solution to problem (4.1). 
Moreover, assume that 𝑌 and 𝑍 are two any solutions of problem (4.1) corresponding to the input data 𝑌 (𝑧0) = 𝑌0 ∈ℱℝ and 𝑍(𝑧0) = 𝑍0 ∈
ℱℝ, then the estimation

Dgr (𝑌 (𝑧),𝑍(𝑧)) ≤ 𝑒𝐿(𝑧, 𝑧0)Dgr
(
𝑌 (𝑧0),𝑍(𝑧0)

)
(4.16)

holds for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 .

Proof. Set 𝑝 = 𝐿𝜃, where 𝐿 is as in hypothesis (B) and 𝜃 > 1. We consider the space 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) endowed with the metric 
D

𝑝
gr and the operator

 ∶ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 ,ℱℝ)→ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 ,ℱℝ) (4.17)

𝑌 ↦  [𝑌 ] (𝑧) = 𝑌0 ⊕gr

𝑧

∫
𝑧0

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠 for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . (4.18)

Observe that, by Lemma 4.1, the solution of (4.1) is a fixed point of the operator  . By the Banach fixed point theorem, we prove the 
existence and uniqueness of a fixed point of the operator  . To this end, one shall verify that  is a contraction map. For arbitrary 
𝑌 , 𝑍 ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), one has

Dgr ( [𝑌 ] , [𝑍]) =Dgr

⎛⎜ 𝑧

𝐹 (𝑠, 𝑌 (𝑠))Δ𝑠,

𝑧

𝐹 (𝑠,𝑍(𝑠))Δ𝑠

⎞⎟

18

⎜⎝∫𝑧0 ∫
𝑧0

⎟⎠
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≤
𝑧

∫
𝑧0

Dgr (𝐹 (𝑠, 𝑌 (𝑠)) , 𝐹 (𝑠,𝑍(𝑠)))Δ𝑠

≤
𝑧

∫
𝑧0

𝐿Dgr (𝑌 (𝑠),𝑍(𝑠))Δ𝑠, (4.19)

where the first inequality follows from Theorem 3.5-ii) and the second from condition (B). For 𝑝 > 0, we have 𝑒𝑝(𝑧, 𝑧0) > 0 for all 
𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 . Combining (4.19) with the property of supremum, it yields that

sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

1
𝑒𝑝(𝑧, 𝑧0)

Dgr ( [𝑌 ] , [𝑍]) ≤ sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

⎛⎜⎜⎝ 1
𝑒𝑝(𝑧, 𝑧0)

𝑧

∫
𝑧0

𝐿Dgr (𝑌 (𝑠),𝑍(𝑠))Δ𝑠

⎞⎟⎟⎠
= 𝐿 sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

⎛⎜⎜⎝ 1
𝑒𝑝(𝑧, 𝑧0)

𝑧

∫
𝑧0

𝑒𝑝(𝑠, 𝑧0)
Dgr (𝑌 (𝑠),𝑍(𝑠))

𝑒𝑝(𝑠, 𝑧0)
Δ𝑠

⎞⎟⎟⎠
≤ 𝐿D

𝑝
gr (𝑌 ,𝑍) sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

⎛⎜⎜⎝ 1
𝑒𝑝(𝑧, 𝑧0)

𝑧

∫
𝑧0

𝑒𝑝(𝑠, 𝑧0)Δ𝑠

⎞⎟⎟⎠ . (4.20)

We observe that

sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

⎛⎜⎜⎝ 1
𝑒𝑝(𝑧, 𝑧0)

𝑧

∫
𝑧0

𝑒𝑝(𝑠, 𝑧0)Δ𝑠

⎞⎟⎟⎠ = sup
𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

⎛⎜⎜⎝ 1
𝑝𝑒𝑝(𝑧, 𝑧0)

𝑧

∫
𝑧0

𝑒Δ
𝑝
(𝑠, 𝑧0)Δ𝑠

⎞⎟⎟⎠
= sup

𝑧∈[𝑧0 ,𝑧0+𝜆]𝕋

1
𝑝

(
1 − 1

𝑒𝑝(𝑧, 𝑧0)

)
= 1

𝑝

(
1 − 1

𝑒𝑝(𝑧0 + 𝜆, 𝑧0)

)
. (4.21)

From the above, we receive

D
𝑝
gr ( [𝑌 ] , [𝑍]) ≤ 𝐿

𝑝

(
1 − 1

𝑒𝑝(𝑧0 + 𝜆, 𝑧0)

)
D

𝑝
gr (𝑌 ,𝑍)

<
1
𝜃
D

𝑝
gr (𝑌 ,𝑍) . (4.22)

Since 𝜃 > 1,  is a contractive mapping in the space (𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ), D
𝑝
gr ). Therefore, by the Banach contraction principle, there 

is a unique function 𝑌 ∈ 𝐶([𝑧0, 𝑧0 + 𝜆]𝕋 , ℱℝ) such that  [𝑌 ] = 𝑌 . Then, it follows that problem (4.1) admits a unique solution.

Now we assume that 𝑌 and 𝑍 are the solutions to the initial value problem (4.1) corresponding to the initial conditions 𝑌0 and 
𝑍0. Denoting (𝑧) =Dgr (𝑌 (𝑧),𝑍(𝑧)) , 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 , from Lemma 4.1 and hypothesis (B), one gets

Dgr (𝑌 (𝑧),𝑍(𝑧)) ≤Dgr
(
𝑌0,𝑍0

)
+

𝑧

∫
𝑧0

Dgr (𝐹 (𝑠, 𝑌 (𝑠)) , 𝐹 (𝑠,𝑍(𝑠)))Δ𝑠

≤Dgr
(
𝑌0,𝑍0

)
+𝐿

𝑧

∫
𝑧0

Dgr (𝑌 (𝑠),𝑍(𝑠))Δ𝑠

=Dgr
(
𝑌0,𝑍0

)
+𝐿

𝑧

∫
𝑧0

(𝑠)Δ𝑠. (4.23)

By applying Gronwall’s inequality (see [25, Lemma 2.1.3]), one gets

(𝑧) ≤ 𝑒𝐿(𝑧, 𝑧0)Dgr
(
𝑌0,𝑍0

)
for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝕋 , (4.24)

which completes the proof. □

5. Applications

This section examines the limitations of previous approaches in studying fuzzy dynamic equations on time scales and their ap-

plication to modeling real-world phenomena. Additionally, we highlight the advantages of the method proposed in this paper for 
addressing these shortcomings. Comparative examples are also provided to illustrate the differences between the proposed approach 
19

and earlier methods. For convenience, we will recall some of the notations that were introduced in [20,23,42,43] as follows: ⊕ and 
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⊙ stand for the addition and the multiplication, respectively, in standard fuzzy arithmetic, and 𝑋ΔgH (𝑧) means the delta generalized 
Hukuhara derivative of 𝑋 at 𝑧.

5.1. The drawbacks of some previous approaches

Similar to research on fuzzy differential equations in continuous-time domains, initial value problems of fuzzy dynamic equations 
using the gH-difference approach, as well as the fuzzy standard interval arithmetic approach, also encounter several drawbacks. These 
limitations have been extensively discussed in the works of M. Mazandarani et al. [26–28] and N.V. Hoa et al. [18]. We will provide 
a brief summary of these shortcomings in the following categories.

1. About the existence of the gH-difference. The initial value problems of fuzzy dynamic equations on time scales using the gH-

difference approach are generally not well-defined because the existence of the gH-difference is not guaranteed. This issue 
underscores the importance of careful analysis when working with fuzzy dynamic equations on time scales that involve the delta 
gH-derivative.

2. About the existence of multi-solution. When solving fuzzy dynamic equations on time scales involving the gH-difference approach, 
an initial assumption regarding the type of delta gH-differentiability (or the monotonicity of the solution) is made. It is crucial 
to recognize that depending on the specific choice of delta gH-differentiability, multiple solutions may arise for the same problem. 
This emphasizes the importance of careful analysis and interpretation of the obtained solutions.

3. About doubling property. Typically, solving fuzzy dynamic equations on time scales using the gH-difference approach requires 
addressing a system of real-valued dynamic equations for each type of delta gH-differentiability. This drawback, known as the 
doubling property, poses a significant challenge, particularly for fuzzy problems with dimensions greater than 2, as it necessitates 
solving a large number of real-valued dynamic equations to determine the solution to a given fuzzy problem.

4. About factorization disability. It is well known that property (iii) in Remark 2.2 does not hold, meaning (𝜔1 ⊕ 𝜔2) ⊙ 𝜔3 ≠ 𝜔1 ⊙

𝜔3 ⊕ 𝜔2 ⊙ 𝜔3, where 𝜔1, 𝜔2, 𝜔3 ∈ℱℝ. This limitation, referred to as the factorization disability, introduces an unnatural aspect 
to fuzzy analysis calculations. More specifically, it is evident that the two equations below are not equivalent

𝑌 ΔgH (𝑧) = 𝜔 ⊙ (𝐹 (𝑧)⊕ 𝐺(𝑧)), (5.1)

𝑌 ΔgH (𝑧) = 𝜔 ⊙ 𝐹 (𝑧)⊕ 𝜔 ⊙ 𝐺(𝑧), (5.2)

for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 , where 𝑌 (𝑧0) = 𝑌0 ∈ℱℝ, and 𝐹 , 𝐺 are fuzzy functions.

5. About the unnatural behavior in modeling phenomenon (UBM). It is well known that 𝜔1 −𝜔2 = 𝜔1 ⊕ (−1) ⊙𝜔2 ≠ 0̂ and 𝜔1 ⊕𝜔2 ≠ 0̂, 
for all 𝜔1, 𝜔2 ∈ℱℝ. Hence, we observe that there is no fuzzy solution to the initial value problems of fuzzy dynamic equations 
on time scales using the gH-difference approach{

𝑌 ΔgH (𝑧)⊕ 𝐹 (𝑧, 𝑌 (𝑧)) = 0̂, for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 ,

𝑌 (𝑧0) = 𝑌0 ∈ℱℝ.
(5.3)

This limitation is known as UBM and can significantly hinder the accurate representation of real-world phenomena.

6. About the catastrophe of physics laws violation (CPLV). Given the drawbacks outlined in points 1 to 5, it is not feasible to accurately 
represent physical phenomena using fuzzy dynamic equations or fuzzy differential equations, nor to study the behavior of fuzzy 
dynamic equations through approaches based on the gH-difference and fuzzy standard interval arithmetic. For example, to 
analyze or predict the behavior of a physical phenomenon or dynamic equations that describe the above phenomenon, a unique 
solution is generally essential for informed decision-making. Practically, we require a unique fuzzy solution that does not depend 
on any specific assumptions about delta gH-differentiability or the monotonicity of the diameter. However, multiple solutions 
may arise when utilizing the gH-difference as well as fuzzy standard interval arithmetic. To deeply explain the concept of CPLV, 
we will quickly consider a widely recognized physical model, called Newton’s Law of Cooling, to demonstrate that the above 
approach cannot be applied.

Newton’s Law of Cooling explains how an object cools in an environment with a constant temperature. The rate of temperature 
change for the object is directly proportional to the difference between its temperature and the surrounding ambient tempera-

ture. Let 𝑇 (𝑧) represent the temperature of the object at time 𝑧, and 𝑇env denote the constant temperature of the surrounding 
environment. We will consider a real-valued dynamic equation on a time scale to describe Newton’s Law of Cooling as follows:

𝑇 ′(𝑧) + Λ(𝑇 (𝑧) − 𝑇env) = 0, for all 𝑧 ∈ [𝑧0, 𝑧0 + 𝜆]𝜅𝕋 , (5.4)

with initial data 𝑇 (𝑧0) = 𝑇0 ∈ ℝ, where 𝑇 ′(𝑧) represents the rate of change of the temperature of the object over time; Λ is 
a positive constant that depends on the properties of the object and the environment; −Λ(𝑇 (𝑧) − 𝑇env) signifies that the rate 
of cooling is proportional to the difference between the object’s temperature and the ambient temperature. The negative sign 
indicates that the object’s temperature decreases over time as it cools. Observe that Equation (5.4) can be represented in the 
following equivalent forms: (i) 𝑇 ′(𝑧) = −Λ(𝑇 (𝑧) − 𝑇env); (ii) 𝑇 ′(𝑧) +Λ𝑇 (𝑧) = Λ𝑇env; (iii) 𝑇 ′(𝑧) −Λ𝑇env = −Λ𝑇 (𝑧). Furthermore, 
Equation (5.4) will have only one solution, and this solution also coincides with the solutions of forms (i)-(iii).
In contrast, when considering problem (5.4) within a fuzzy environment under the concept of gH-difference, the fuzzy standard 
20

interval arithmetic approach, and any related concepts to account for uncertainties in input data, such as 𝑇env ∈ℱℝ and 𝑇0 ∈ℱℝ, 
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the uniqueness of the solution is no longer guaranteed. Additionally, the solutions to the forms (i)-(iii) and (5.4) do not coincide. 
This is a result of CPLV. To clarify the CPLV with more detailed analysis, we refer to the paper [26] in which an electrical circuit 
in a fuzzy environment is examined. The authors highlighted two key issues with CPLV: (1) It results in a violation of physical 
laws, which limits the applicability of fuzzy standard interval arithmetic methods and related concepts, such as the strongly 
generalized Hukuhara derivative, generalized Hukuhara derivative, and generalized derivative; (2) This violation of physical 
laws leads to the generation of infinite solutions by these approaches, as they fail to observe natural constraints.

Several promising approaches have recently emerged to address the aforementioned shortcomings. Two particularly effective methods 
stand out: one involves fuzzy arithmetic operations using the concept of linearly correlated fuzzy sets, proposed by E. Esmi et al. 
[14,36], and the other is based on granular operations, as proposed by A. Piegat et al. [33] and M. Mazandarani et al. [27]. However, 
despite its effectiveness and reliability compared to the gH-difference method, the linearly correlated difference approach still faces 
challenges. These challenges include the complexity of solving fuzzy dynamic equations and determining the joint possibility or 
correlation between fuzzy parameters, making it difficult to apply in the analysis of fuzzy dynamic equations. On the other hand, the 
approach based on the gr-difference, along with the granular operations presented in this paper, has proven effective in overcoming 
the limitations of previous methods. Inspired by granular operations, many recent achievements have been made across various 
scientific fields. Notable advancements include the study of Lyapunov stability in fuzzy dynamical systems using the gr-derivative 
[2,3], optimality in fuzzy optimization problems [29], and the finite-time stability of Caputo fractional fuzzy differential equations 
[37]. These results highlight the significant advantages of this method for studying and modeling practical problems compared to 
earlier approaches.

5.2. Numerical examples

To illustrate the benefits of using the granular operations approach for fuzzy dynamic equations on time scales in analyzing 
practical models, this subsection will compare it with a previously established method that examines fuzzy dynamic equations using 
the delta gH-derivative. This earlier method has been introduced and explored in various studies, as referenced in [20,23,42,43] and 
related works.

Example 5.1 (The radioactive decay problem). Radioactive decay encompasses the release of ionizing radiation from unstable elements, 
resulting in their conversion into different elements. This process occurs randomly, rendering it unfeasible to anticipate which atoms 
will decay at any specific instance. However, the foundational equation for radioactive decay is built on specific assumptions: (i) Any 
radioactive atom can decay at any time; (ii) The probability of decay is consistent across all atoms in the substance; (iii) The probability 
of decay remains constant over time; (iv) Atoms decay independently of each other. Very recently, investigating the mathematical 
model of radioactive decay on time scales has become crucial for gaining a more comprehensive and accurate understanding of the 
process. The benefits extend to a wide range of fields, including science, industry, health, and environmental management, where 
the precise knowledge of radioactive decay dynamics is essential for research, safety, and decision-making.

We consider the nuclear decay equation on an arbitrary time scale 𝕋 under the form{
𝑋Δgr (𝑧) = −𝑝𝑋(𝑧), 𝑧 ∈ [0,∞)𝕋 ,

𝑋(0) = 𝑣,
(5.5)

where 𝑋(𝑧) represents the count of radioactive nuclei within a particular radioactive material at time 𝑧 ∈ 𝕋 and 𝑝 > 0 such that 
−𝑝 ∈ (𝕋 , ℝ); The quantity 𝑝−1 > 0 denotes the average lifetime of each radioactive atom, which is consistent for every type of 
radioactive substance; 𝑋(0) signifies the initial quantity of radioactive nuclei. In this scenario, when there is ambiguity or lack 
of precise information regarding the initial quantity 𝑋(0) of radioactive nuclei within the material, model (5.5) must incorporate 
uncertainty. Let us suppose that, based on a measurement, we have determined a fuzzy interval [𝑣]𝑟 = [𝑋0 − 𝜀1(1 − 𝑟), 𝑋0 + 𝜀2(1 − 𝑟)], 
where 0 < 𝜀1 ≤ 𝑋0 and 𝜀2 > 0, which covers the unknown exact value of 𝑋0. In the nuclear decay model, we incorporate the concept 
of a fuzzy mapping denoted as 𝑋, where 𝑋(𝑧) can be viewed as a representation of the interval of uncertainty in the time 𝑧.

Next, the model (5.5) will be solved. From Definitions 2.4 and 2.5, the corresponding granular nuclear decay equation of problem 
(5.5) is given by{(𝑋Δgr (𝑧)) =(−𝑝𝑋(𝑧)), 𝑧 ∈ [0,∞)𝕋 ,

(𝑋(0)) =(𝑣).
(5.6)

Utilizing Theorem 3.3, problem (5.6) can be represented equivalently by

⎧⎪⎨⎪⎩
𝜕𝑋gr (𝑧, 𝑟, 𝛼𝑋 )

Δ𝑧
= −𝑝𝑋gr (𝑧, 𝑟, 𝛼𝑋 ), 𝑧 ∈ [0,∞)𝕋 ,

𝑋gr (0, 𝑟, 𝛼𝑋 ) = 𝑣gr (𝑟, 𝛼𝑣)
(5.7)

for all 𝑟, 𝛼𝑋, 𝛼𝑣 ∈ [0, 1], where 𝑣gr (𝑟, 𝛼𝑣) = 𝑋0 − 𝜀1(1 − 𝑟) + (𝜀2 + 𝜀1)(1 − 𝑟)𝛼𝑣. By applying the method of variation of constants, the 
21

exact solution of (5.7) is obtained as follows:
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Fig. 9. The 𝑟-level set of 𝑋(𝑧) on 𝕋 =ℝ. The lower and upper borders of [𝑋(𝑧)]𝑟 are depicted by the blue-solid curves and red-solid curves, and the green-solid curve 
is for 𝑟 = 1.

Fig. 10. The graph of 𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) on 𝕋 =ℝ, with 𝛼𝑋 = 0 (the black grid) and 𝛼𝑋 = 1 (the blue grid).

𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) = 𝑣gr (𝑟, 𝛼𝑣)𝑒−𝑝(𝑧,0). (5.8)

Then, by the formula (2.6), we get

[𝑋(𝑧)]𝑟 =
[
inf
𝛽≥𝑟

min
𝛼𝑣∈[0,1]

(
𝑣gr (𝛽, 𝛼𝑣)𝑒−𝑝(𝑧,0)

)
, sup
𝛽≥𝑟

max
𝛼𝑣∈[0,1]

(
𝑣gr (𝛽, 𝛼𝑣)𝑒−𝑝(𝑧,0)

)]
. (5.9)

Let us fix 𝑋0 = 2, 𝜀2 = 2𝜀1 = 2 and consider 𝕋 =ℝ, 𝑝 = 2. Then, the solution to problem (5.7) is given by

[𝑋(𝑧)]𝑟 = [(1 + 𝑟)𝑒−2𝑧, (4 − 2𝑟)𝑒−2𝑧]. (5.10)

Trajectories of 𝑟-level set and granular representation of the solution to problem (5.7) are shown in Figs. 9 and 10. If we consider 
𝕋 = ℎℤ, ℎ = 0.2, and 𝑝 = 2, then the solution to problem (5.7) is

[𝑋(𝑧)]𝑟 = [(1 + 𝑟)𝑒−2(𝑧,0), (4 − 2𝑟)𝑒−2(𝑧,0)]. (5.11)
22

Trajectories of the 𝑟-level set and granular representation of the solution to problem (5.7) are shown in Figs. 11 and 12.
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Fig. 11. The 𝑟-level set of 𝑋(𝑧) on 𝕋 = 0.2ℤ. The lower and upper borders of [𝑋(𝑧)]𝑟 are shown as blue-dashed curves and red-dashed curves, and the green-dashed 
curve is with 𝑟 = 1.

Fig. 12. The graph of 𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) on 𝕋 = 0.2ℤ, with 𝛼𝑋 = 0 (the black-crossed grid) and 𝛼𝑋 = 1 (the blue-stared grid).

Remark 5.1. In our analysis, we compare the results obtained by applying the granular delta derivative in Example 5.1 with those de-

rived using the recently introduced concept of the delta gH-derivative (ΔgH-derivative), as presented in [20,23,42] and the references 
therein. Model (5.5) can be rewritten under the delta gH-derivative concept as{

𝑋ΔgH (𝑧) = −𝑝𝑋(𝑧), 𝑧 ∈ [0,∞)𝕋 ,

𝑋(0) = 𝑣,
(5.12)

where 𝑝 > 0 such that −𝑝 ∈(𝕋 , ℝ); 𝑋ΔgH (𝑧) means the delta gH-derivative of 𝑋 at 𝑧 (see [23, Definition 9]). Using a method similar 
to the one mentioned in [23, Remark 10], with respect to the two types of ΔgH-derivative of 𝑋(𝑧), one gets two solutions as

[𝑋(𝑧)]𝑟 =
[5 − 𝑟

2
𝑒−𝑝(𝑧,0) − 3 − 3𝑟

2
𝑒𝑝(𝑧,0), 5 − 𝑟

2
𝑒−𝑝(𝑧,0) + 3 − 3𝑟

2
𝑒𝑝(𝑧,0)

]
(5.13)

for all 𝑧 ∈ [0, ∞)𝕋 , 𝑟 ∈ [0, 1], if the diameter of the 𝑟-level set of 𝑋(𝑧), 𝑑([𝑋(𝑧)]𝑟 ∶= 𝑋(𝑧, 𝑟) −𝑋(𝑧, 𝑟), is nondecreasing on 𝕋 , and[ ]

23

[𝑋(𝑧)]𝑟 = (1 + 𝑟)𝑒−𝑝(𝑧,0), (4 − 2𝑟)𝑒−𝑝(𝑧,0) (5.14)
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Fig. 13. The 𝑟-level set of 𝑋(𝑧) on 𝕋 =ℝ. The lower and upper borders of [𝑋(𝑧)]𝑟 are depicted by the blue-solid curves and red-solid curves.

Fig. 14. The 𝑟-level set of 𝑋(𝑧) on 𝕋 =ℝ. The lower and upper borders of [𝑋(𝑧)]𝑟 are depicted by the blue-solid curves and red-solid curves.

if 𝑑([𝑋(𝑧)]𝑟 is nonincreasing on 𝕋 . The graphical representations of solutions to problem (5.12) with respect to 𝕋 =ℝ and 𝑝 = 2 are 
illustrated in Figs. 13 and 14. Through two cases of the solutions of the model (5.5), one gets the following typical observations:

- It is straightforward to verify that both (5.13) and (5.14) are valid solutions to the model (5.12), as 𝑑([𝑋(𝑧)]𝑟) = (3 − 3𝑟)𝑒𝑝(𝑧, 0)
is nondecreasing on [0, ∞)𝕋 in the form (5.13), and 𝑑([𝑋(𝑧)]𝑟) = (3 −3𝑟)𝑒−𝑝(𝑧, 0) is nonincreasing on [0, ∞)𝕋 in the form (5.14), 
respectively, where 𝑝 > 0 and 𝑟 ∈ [0, 1]. It is well known that since 𝑋(𝑧) represents the count of radioactive nuclei within a 
particular material at time 𝑧, it must be non-negative and non-increasing at any point. However, the 𝑟-level set of the solution to 
problem (5.12) given in (5.13) reveals that it is possible for 𝑋(𝑧) to take on negative values (see Fig. 13). In addition, there exist 
multiple solutions to the proposed model (5.12). These issues arise due to the CPLV limitations inherent in the gH-derivative 
approach.

- Consider Example 5.1, where the granular delta derivative approach offers significant flexibility by not requiring a specific type 
24

of differentiability or assumptions about the monotonicity of the solution’s diameter during the solving process. This flexibility 
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effectively eliminates the issue of multiple solutions. Moreover, the drawbacks highlighted in Subsection 5.1 are also resolved. 
This feature provides a considerable advantage, making the approach more suitable for practical applications.

Example 5.2. Let us consider an initial value problem of fuzzy dynamics on an arbitrary time scale 𝕋 under the form{
𝑋Δgr (𝑧) = −𝑝𝑋(𝑧)⊕gr 𝑢𝑧, 𝑧 ∈ [0,∞)𝕋 ,

𝑋(0) = 𝑣,
(5.15)

where 𝑢 = (1, 1.5, 2), 𝑣 = (0, 0.5, 1) ∈ℱℝ and 𝑝 > 0 with −𝑝 ∈(𝕋 , ℝ). By direct computing, one gets [𝑢]𝑟 = [1 + 0.5𝑟, 2 − 0.5𝑟] and 
[𝑣]𝑟 = [0.5𝑟, 1 − 0.5𝑟]. The corresponding HMFs of 𝑢 and 𝑣 are 𝑢gr (𝑟, 𝛼𝑢) = 1 + 0.5𝑟 + (1 − 𝑟)𝛼𝑢 and 𝑣gr (𝑟, 𝛼𝑣) = 0.5𝑟 + (1 − 𝑟)𝛼𝑣 for all 
𝛼𝑢, 𝛼𝑣 ∈ [0, 1]. Define 𝐹 (𝑧, 𝑋(𝑧)) ∶= −𝑝𝑋(𝑧) ⊕gr 𝑢𝑧, 𝑧 ∈ [0, ∞)𝕋 . Then, one has

Dgr (𝐹 (𝑧,𝑋(𝑧)), 𝐹 (𝑧, 𝑌 (𝑧))) =Dgr
(
−𝑝𝑋(𝑧)⊕gr 𝑢𝑧,−𝑝𝑌 (𝑧)⊕gr 𝑢𝑧

)
= |𝑝|Dgr (𝑋(𝑧), 𝑌 (𝑧)) + |𝑧|Dgr (𝑢, 𝑢). (5.16)

Moreover, 𝐹 belongs to 𝐶rd([0, ∞)𝕋 , ℱℝ). Thus, the hypotheses of Theorem 4.2 hold, which yields that problem (5.15) has a unique 
solution. From Definitions 2.4 and 2.5, the corresponding granular dynamic equation of problem (5.15) is given by{(𝑋Δgr (𝑧)) =(−𝑝𝑋(𝑧)) +(𝑢𝑧), 𝑧 ∈ [0,∞)𝕋 ,

(𝑋(0)) =(𝑣).
(5.17)

Using Theorem 3.3, the problem (5.17) can be equivalently rewritten as follows:{
𝜕𝑋gr (𝑧,𝑟,𝛼𝑋 )

Δ𝑧
= −𝑝𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) + 𝑧𝑢gr (𝑟, 𝛼𝑢), 𝑧 ∈ [0,∞)𝕋 ,

𝑋gr (0, 𝑟, 𝛼𝑋 ) = 𝑣gr (𝑟, 𝛼𝑣)
(5.18)

for all 𝑟, 𝛼𝑋, 𝛼𝑢, 𝛼𝑣 ∈ [0, 1]. The variation of constants method is used to obtain the solution to problem (5.18). For convenience, we 
put 𝑞 ∶= −𝑝 < 0. From the fact 𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) = 𝑋gr (𝜎(𝑧), 𝑟, 𝛼𝑋 ) − 𝜇(𝑧) 𝜕𝑋gr (𝑧,𝑟,𝛼𝑋 )

Δ𝑧
, the first equation in (5.18) can be rewritten as

𝜕𝑋gr (𝑧, 𝑟, 𝛼𝑋 )
Δ𝑧

= 𝑞𝑋gr (𝜎(𝑧), 𝑟, 𝛼𝑋 ) − 𝑞𝜇(𝑧)
𝜕𝑋gr (𝑧, 𝑟, 𝛼𝑋 )

Δ𝑧
+ 𝑧𝑢gr (𝑟, 𝛼𝑢). (5.19)

By dividing two sides of (5.19) by the term 1 + 𝜇(𝑧)𝑞, one obtains

𝜕𝑋gr (𝑧, 𝑟, 𝛼𝑋 )
Δ𝑧

+ (⊖𝑞)𝑋gr (𝜎(𝑧), 𝑟, 𝛼𝑋 ) =
𝑧𝑢gr (𝑟, 𝛼𝑢)
1 + 𝜇(𝑧)𝑞

. (5.20)

Multiplying both sides of (5.20) by 𝑒⊖𝑞(𝑧, 0), one gets

𝜕
[
𝑋gr (𝑧, 𝑟, 𝛼𝑋 )𝑒⊖𝑞(𝑧,0)

]
Δ𝑧

=
𝑧𝑢gr (𝑟, 𝛼𝑢)
1 + 𝜇(𝑧)𝑞

𝑒⊖𝑞(𝑧,0). (5.21)

Next, we integrate equation (5.21) and derive

𝑋gr (𝑧, 𝑟, 𝛼𝑋 )𝑒⊖𝑞(𝑧,0) −𝑋gr (0, 𝑟, 𝛼𝑋 )𝑒⊖𝑞(0,0) =

𝑧

∫
0

𝑠𝑢gr (𝑟, 𝛼𝑢)
1 + 𝜇(𝑠)𝑞

𝑒⊖𝑞(𝑠,0)Δ𝑠. (5.22)

Using the equality 𝑒⊖𝑞(𝑧, 0) = 1
𝑒𝑞 (𝑧,0) and multiplying both sides of (5.22) by 𝑒𝑞(𝑧, 0), we have

𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) = 𝑋gr (0, 𝑟, 𝛼𝑋 )𝑒𝑞(𝑧,0) + 𝑢gr (𝑟, 𝛼𝑢)

𝑧

∫
0

𝑠𝑒𝑞(𝑧, 𝜎(𝑠))Δ𝑠. (5.23)

By direct computation, one gets 
𝑧

∫
0

𝑠𝑒𝑞(𝑧, 𝜎(𝑠))Δ𝑠 = 1
𝑞2

[𝑒𝑞(𝑧, 0) − 1] − 1
𝑞

𝑧. Therefore, the solution to problem (5.18) is given by

𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) = 𝑣gr (𝑟, 𝛼𝑣)𝑒𝑞(𝑧,0) + 𝑢gr (𝑟, 𝛼𝑢)
(

𝑒𝑞(𝑧,0) − 1
𝑞2

− 1
𝑞

𝑧

)
. (5.24)

Applying formula (2.6), we obtain

[𝑋(𝑧)]𝑟 =
[
inf
𝛽≥𝑟

min
𝛼𝑢,𝛼𝑣

(
𝑣gr (𝛽, 𝛼𝑣)𝑒−𝑝(𝑧,0) + 𝑢gr (𝛽, 𝛼𝑢)

(
𝑒−𝑝(𝑧,0) − 1

𝑝2
+ 1

𝑝
𝑧

))
,

supmax
(

𝑣gr (𝛽, 𝛼𝑣)𝑒−𝑝(𝑧,0) + 𝑢gr (𝛽, 𝛼𝑢)
(

𝑒−𝑝(𝑧,0) − 1
+ 1

𝑧

))]
. (5.25)
25

𝛽≥𝑟 𝛼𝑢,𝛼𝑣 𝑝2 𝑝
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Fig. 15. The 𝑟-level set of 𝑋(𝑧) on 𝕋 =ℝ. The lower and upper borders of [𝑋(𝑧)]𝑟 are depicted by the blue-solid curves and red-solid curves, and the green-solid curve 
is for 𝑟 = 1.

Fig. 16. The graph of 𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) on 𝕋 =ℝ, with 𝛼𝑋 = 0 (the black grid) and 𝛼𝑋 = 1 (the blue grid).

[𝑋(𝑧)]𝑟 = [(0.25 + 0.625𝑟)0.65𝑧 + (0.5𝑧 − 0.25)(1 + 0.5𝑟), (1.5 − 0.625𝑟)0.65𝑧 + (0.5𝑧 − 0.25)(2 − 0.5𝑟)], (5.26)

by utilizing the formula (2.6). Trajectories of the 𝑟-level set and granular representation of the solution to problem (5.15) are shown 
in Figs. 17 and 18. If 𝕋 =ℝ and 𝑝 = 2, then the granular solution to problem (5.15) is provided by

𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) = [0.5𝑟+ (1 − 𝑟)𝛼𝑣]𝑒−2𝑧 + [1 + 0.5𝑟+ (1 − 𝑟)𝛼𝑢](0.25𝑒−2𝑧 + 0.5𝑧− 0.25), (5.27)

which leads to

[𝑋(𝑧)]𝑟 = [(0.25 + 0.625𝑟)𝑒−2𝑧 + (0.5𝑧− 0.25)(1 + 0.5𝑟), (1.5 − 0.625𝑟)𝑒−2𝑧 + (0.5𝑧− 0.25)(2 − 0.5𝑟)], (5.28)

by utilizing the formula (2.6). Trajectories of the 𝑟-level set and granular representation of the solution to problem (5.15) are shown 
in Figs. 15 and 16.

Similarly, if 𝕋 = ℎℤ, ℎ = 0.2, and 𝑝 = 2, then the granular solution to problem (5.15) is provided by
26

𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) = [0.5𝑟+ (1 − 𝑟)𝛼𝑣]0.65𝑧 + [1 + 0.5𝑟+ (1 − 𝑟)𝛼𝑢](0.25 ⋅ 0.65𝑧 + 0.5𝑧− 0.25), (5.29)
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Fig. 17. The 𝑟-level set of 𝑋(𝑧) on 𝕋 = 0.2ℤ. The lower and upper borders of [𝑋(𝑧)]𝑟 are shown as blue-dashed curves and red-dashed curves, and the green-dashed 
curve is for 𝑟 = 1.

Fig. 18. The graph of 𝑋gr (𝑧, 𝑟, 𝛼𝑋 ) on 𝕋 = 0.2ℤ, with 𝛼𝑋 = 0 (the black-crossed grid) and 𝛼𝑋 = 1 (the blue-stared grid).

which leads to

Remark 5.2. Similar to Remark 5.1, we will also analyze Example 5.2 under the delta gH-derivative approach. Model (5.15) can be 
rewritten under the delta gH-derivative concept as{

𝑋ΔgH (𝑧) = −𝑝𝑋(𝑧)⊕ 𝑢𝑧, 𝑧 ∈ [0,∞)𝕋 ,

𝑋(0) = 𝑣,
(5.30)

where 𝑢 = (1, 1.5, 2), 𝑣 = (0, 0.5, 1) ∈ℱℝ, 𝑝 > 0 such that −𝑝 ∈(𝕋 , ℝ); ⊕ stands for the Minkowski addition, and 𝑋ΔgH (𝑧) means the 
delta generalized Hukuhara derivative of 𝑋 at 𝑧 (see [23, Definition 9]). Assume that [𝑋(𝑧)]𝑟 = [𝑋(𝑧, 𝑟), 𝑋(𝑧, 𝑟)], 𝑧 ∈ [0, ∞)𝕋 , 𝑟 ∈ [0, 1]. 
Using a method similar to the one mentioned in [23, Remark 10], with respect to the two types of ΔgH-derivative of 𝑋(𝑧), we 
27

distinguish and solve the two problems
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Fig. 19. The graphs of 𝑋(𝑧, 𝑟) (the blue-dashed curves) and 𝑋(𝑧, 𝑟) (the red-dashed curves) in different values of 𝑟 (the green-dashed curve is with 𝑟 = 1).

{
𝑋Δ(𝑧, 𝑟) = −𝑝𝑋(𝑧, 𝑟) + 𝑧(1 + 0.5𝑟), 𝑋(0, 𝑟) = 0.5𝑟,
𝑋

Δ
(𝑧, 𝑟) = −𝑝𝑋(𝑧, 𝑟) + 𝑧(2 − 0.5𝑟), 𝑋(0, 𝑟) = 1 − 0.5𝑟,

(5.31)

if the diameter of the 𝑟-level set of 𝑋(𝑧), 𝑑([𝑋(𝑧)]𝑟 ∶= 𝑋(𝑧, 𝑟) −𝑋(𝑧, 𝑟), is nondecreasing on 𝕋 , and{
𝑋Δ(𝑧, 𝑟) = −𝑝𝑋(𝑧, 𝑟) + 𝑧(2 − 0.5𝑟), 𝑋(0, 𝑟) = 0.5𝑟,
𝑋

Δ
(𝑧, 𝑟) = −𝑝𝑋(𝑧, 𝑟) + 𝑧(1 + 0.5𝑟), 𝑋(0, 𝑟) = 1 − 0.5𝑟,

(5.32)

if 𝑑([𝑋(𝑧)]𝑟 is nonincreasing on 𝕋 . We notice that, for 𝑟 = 0, problem (5.30) becomes 𝑋ΔgH (𝑧) = −𝑝𝑋(𝑧) + 𝑧[1, 2], 𝑧 ∈ [0, ∞)𝕋 , 𝑋(0) =
[0, 1], what was rigorously studied in [23].

In order to find the solutions to system (5.31), we can transfer the system to a second-order dynamic equation as{
𝑋ΔΔ(𝑧, 𝑟) − 𝑝2𝑋Δ(𝑧, 𝑟) = −𝑝𝑧(2 − 0.5𝑟) + 1 + 0.5𝑟,
𝑋(0, 𝑟) = 0.5𝑟, 𝑋Δ(0, 𝑟) = −𝑝(1 − 0.5𝑟).

(5.33)

Applying the method of variation of parameters in [9, Theorem 3.73], one receives the exact solution to (5.33) as

𝑋(𝑧, 𝑟) = 𝑝2 + 3
2𝑝2

𝑒−𝑝(𝑧,0) + (𝑝2 + 1)(𝑟− 1)
2𝑝2

𝑒𝑝(𝑧,0) + 2 − 0.5𝑟
𝑝

𝑧− 1 + 0.5𝑟
𝑝2

(5.34)

for all 𝑧 ∈ [0, ∞)𝕋 , 𝑟 ∈ [0, 1]. Similarly, we obtain

𝑋(𝑧, 𝑟) = 𝑝2 + 3
2𝑝2

𝑒−𝑝(𝑧,0) + (𝑝2 + 1)(1 − 𝑟)
2𝑝2

𝑒𝑝(𝑧,0) + 1 + 0.5𝑟
𝑝

𝑧− 2 − 0.5𝑟
𝑝2

. (5.35)

The trajectories of 𝑋(𝑧, 𝑟), 𝑋(𝑧, 𝑟), 𝑧 ∈ [0, 6]𝕋 in the case that 𝕋 = ℎ𝑍, ℎ = 0.2 and 𝑝 = 2 are shown in Fig. 19. Apparently, there is no 
switching point between 𝑋(𝑧, 𝑟) and 𝑋(𝑧, 𝑟), 𝑧 ∈ [0, 6]𝕋 . Furthermore, the diameter of the 𝑟-level set of 𝑋(𝑧) is also increasing on 𝕋 . 
Therefore, one can deduce that 𝑋(𝑧) is a solution to problem (5.30), which has the form [𝑋(𝑧)]𝑟 = [𝑋(𝑧, 𝑟), 𝑋(𝑧, 𝑟)] for all 𝑧 ∈ [0, 6]𝕋 , 
where 𝑋(𝑧, 𝑟) and 𝑋(𝑧, 𝑟) are given by (5.34) and (5.35), respectively.

Next, to find the solution to system (5.32), we employ the method of variation of parameters (see [9, Theorem 2.77]). The exact 
solution to (5.32) is given as follows:

𝑋(𝑧, 𝑟) =
(
0.5𝑟+ 2 − 0.5𝑟

𝑝2

)
𝑒−𝑝(𝑧,0) + (2 − 0.5𝑟)𝑧

𝑝
− 2 − 0.5𝑟

𝑝2
(5.36)

and (
1 + 0.5𝑟

)
(1 + 0.5𝑟)𝑧 1 + 0.5𝑟
28

𝑋(𝑧, 𝑟) = 1 − 0.5𝑟+
𝑝2

𝑒−𝑝(𝑧,0) +
𝑝

−
𝑝2

(5.37)
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Fig. 20. The graphs of 𝑋(𝑧, 𝑟) (the blue-dashed curves) and 𝑋(𝑧, 𝑟) (the red-dashed curves) in different values of 𝑟 (the green-dashed curve is with 𝑟 = 1).

for all 𝑧 ∈ [0, ∞)𝕋 , 𝑟 ∈ [0, 1]. The trajectories of 𝑋(𝑧, 𝑟) and 𝑋(𝑧, 𝑟), 𝑧 ∈ [0, 6]𝕋 in the case that 𝕋 = ℎℤ, ℎ = 0.2 and 𝑝 = 2 are illustrated 
in Fig. 20. Apparently, one observes that there is a switching point between 𝑋(𝑧, 𝑟) and 𝑋(𝑧, 𝑟), 𝑧 ∈ [0, 2]𝕋 and it is not on [0, 6]𝕋 . 
This shows that the diameter 𝑑([𝑋(𝑧)]𝑟) of the 𝑟-level set of 𝑋(𝑧) is nondecreasing on [0, 6]𝕋 , which implies that 𝑋 is not a solution 
of problem (5.30).

Through two cases of the solutions of problem (5.30), one gets the following typical observations:

- Problem (5.30) has a solution with a nondecreasing diameter of the 𝑟-level set within the interval [0, 6]𝕋 , as it is demonstrated 
in Fig. 19. However, this state of the system may not accurately represent the behavior of the system in practical situations. 
Typically, the solution to problem (5.30) in a crisp (nonfuzzy) context is always positive for all 𝑧 ∈ [0, 6]𝕋 , given positive input 
data. This condition is not satisfied by 𝑋(𝑧), as depicted in Fig. 19, where for sufficiently large values of 𝑧, the values of 𝑋(𝑧)
can become nonpositive. This is due to the CPLV that the 𝑔𝐻 -derivative approach suffers from. On the other hand, when we 
employ the granular delta derivative concept, as demonstrated in Example 5.2, the fuzzy solution remains consistently positive 
and accurately mirrors the system’s behavior, as shown in Figs. 15 and 17.

- When we utilize the granular delta derivative approach, the flexibility of not being restricted to a specific type of differentiability 
(or the assumption of monotonicity of the diameter of the solution) during the solving process eliminates the problem of multiple 
solutions. Rather than having to solve two systems (5.31) and (5.32), as seen in this example, we only need to solve a single 
system, as in Example 5.2. This characteristic is highly advantageous and is better suited for practical applications.

Example 5.3 (Malthusian model on hybrid domains). Let us consider the special time scale

𝕋 =
∞⋃

𝑚=0
[2𝑚,2𝑚+ 1]. (5.38)

This time scale consists of an infinite number of disjoint closed intervals, making it suitable for modeling and studying real-world 
phenomena on both continuous and discrete time domains simultaneously (see [9]). In this example, the fuzzy Malthusian model on 
the hybrid domain (5.38) takes the form:

𝑃Δgr (𝑧) = 𝜚(𝑧)𝑃 (𝑧), 𝑃 (0) = 𝑃0, (5.39)

where 𝑃0 is a fuzzy initial population at time 𝑧 = 0, 𝜚 ∶ 𝕋 →ℝ is the real-valued growth function defined by

𝜚(𝑧) =

{
−𝑘 if 𝑧 ∈ [2𝑚,2𝑚+ 1),
𝜆 if 𝑧 = 2𝑚+ 1,

(5.40)

with 𝑚 ≥ 0 and 𝜆, 𝑘 ∈ (0, 1).
Define 𝐹 ∶ 𝕋 ×ℱℝ →ℱℝ with 𝐹 (𝑧, 𝑃 (𝑧)) ∶= 𝜚(𝑧)𝑃 (𝑧) and set 𝑛0 = max𝑧∈𝕋 |𝜚(𝑧)|. For problem (5.39), we examine the validity of 

conditions in Theorem 4.2. Indeed, because 𝐹 is rd-continuous, hypothesis (A) holds. Moreover, for any 𝑃 , 𝑄 ∈ 𝐶rd(𝕋 , ℱℝ), one has
29

Dgr (𝐹 (𝑧,𝑃 (𝑧)),𝑄(𝑧,𝑃 (𝑧))) =Dgr (𝜚(𝑧)𝐹 (𝑧), 𝜚(𝑧)𝑄(𝑧)) (5.41)
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Fig. 21. The 𝑟-level set of 𝑃 (𝑧) on 𝕋 with the three first values of 𝑚. The lower and upper borders of [𝑃 (𝑧)]𝑟 are depicted by the blue-solid curves and red-solid curves, 
and the green-stared curve is with 𝑟 = 1.

= |𝜚(𝑧)|Dgr (𝐹 (𝑧),𝑄(𝑧)) (5.42)

≤ 𝑛0Dgr (𝐹 (𝑧),𝑄(𝑧)), (5.43)

which means that (B) is fulfilled with 𝐿 = 𝑛0. From Definitions 2.4 and 2.5, the corresponding granular dynamic equation of (5.40)

is represented by{
𝜕𝑃 gr (𝑧,𝑟,𝛼𝑃 )

Δ𝑧
= 𝜚(𝑧)𝑃 gr (𝑧, 𝑟, 𝛼𝑃 ),

𝑃 gr (0, 𝑟, 𝛼𝑃 ) = 𝑃
gr
0 (𝑟, 𝛼𝑃0

),
(5.44)

for all 𝑟, 𝛼𝑃 , 𝛼𝑃0
∈ [0, 1]. Utilizing induction method, one gets the solution

𝑃 gr (𝑧, 𝑟, 𝛼𝑃 ) =

{
(1 + 𝜆)𝑚𝑃

gr
0 (𝑟, 𝛼𝑃0

)𝑒𝜆𝑚−𝑘(𝑧−2𝑚) if 𝑧 ∈ [2𝑚,2𝑚+ 1),
(1 + 𝜆)𝑚𝑃

gr
0 (𝑟, 𝛼𝑃0

)𝑒𝜆(𝑧−𝑚) if 𝑧 = 2𝑚+ 1.
(5.45)

The 𝑟-level set of the solution to problem (5.39) is obtained by formula (2.6). To illustrate problem (5.39), we choose 𝑘 = 0.2, 𝜆 = 0.4, 
and the population size 𝑃0 at time 𝑧 = 0 to be 𝑃0 = (900, 1000, 1100) ∈ℱℝ. In this case, the exact solution to problem (5.39) is given 
by

𝑃 gr (𝑧, 𝑟, 𝛼𝑃 ) =

{
1.4𝑚[900 + 100𝑟+ (200 − 200𝑟)𝛼𝑃0

]𝑒0.4𝑚−0.2(𝑧−2𝑚) if 𝑧 ∈ [2𝑚,2𝑚+ 1),
1.4𝑚[900 + 100𝑟+ (200 − 200𝑟)𝛼𝑃0

]𝑒0.4(𝑧−𝑚) if 𝑧 = 2𝑚+ 1
(5.46)

and the 𝑟-level set of 𝑃 (𝑧) is

[𝑃 (𝑧)]𝑟 =

{[
(900 + 100𝑟)1.4𝑚𝑒0.8𝑚−0.2𝑧, (1100 − 100𝑟)1.4𝑚𝑒0.8𝑚−0.2𝑧] if 𝑧 ∈ [2𝑚,2𝑚+ 1),[
(900 + 100𝑟)1.4𝑚𝑒0.4(𝑧−𝑚), (1100 − 100𝑟)1.4𝑚𝑒0.4(𝑧−𝑚)] if 𝑧 = 2𝑚+ 1.

(5.47)

The 𝑟-level set and granular representation of the solution to problem (5.39) are shown in Figs. 21 and 22, respectively.

6. Conclusion

In this paper, we introduced the novel concept of granular delta differentiability and integrability for fuzzy functions on time scales, 
leveraging granular arithmetic operations within multidimensional fuzzy arithmetic (MFA). This concept allowed us to establish the 
fundamental principles of fuzzy calculus on time scales. By applying Schaefer’s fixed-point theorem, we rigorously proved the existence 
of solutions to fuzzy dynamic equations. Furthermore, we explored the existence of a unique solution and the continuous dependence 
of the solution on the initial conditions of the fuzzy dynamic equations.

Stability analysis of dynamic systems on time scales with uncertainties is a crucial area of research with applications in various 
fields such as control theory, engineering, mathematical biology, etc. For further works, using the foundations of fuzzy calculus on 
time scales in this paper, we shall investigate the stability (in different types) properties of dynamic systems on time scales with 
30

uncertain information. For instance, we shall consider fuzzy switched impulsive dynamical systems on time scales as follows:
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Fig. 22. The graph of 𝑃 gr (𝑧, 𝑟, 𝛼𝑃 ) with 𝛼𝑃 = 0 (the black grid) and 𝛼𝑃 = 1 (the blue grid).

⎧⎪⎨⎪⎩
𝑌 Δgr (𝑡) = 𝐴𝑘𝑌 (𝑡), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘]𝕋 , 𝑘 = 1,2,… ,

𝑌 (𝑡+
𝑘
) = 𝐹𝑘(𝑡𝑘, 𝑌 (𝑡𝑘)), 𝑘 = 1,2,… ,

𝑌 (0) = 𝑌0,

(6.1)

and impulsive system with a fuzzy control

⎧⎪⎨⎪⎩
𝑌 Δgr (𝑡) = 𝐴𝑘𝑌 (𝑡) +𝐵𝑘Ψ(𝑡), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘]𝕋 , 𝑘 = 1,2,… ,

𝑌 (𝑡+
𝑘
) = 𝐹𝑘(𝑡𝑘, 𝑌 (𝑡𝑘)), 𝑘 = 1,2,… ,

𝑌 (0) = 𝑌0,

(6.2)

where 𝕋 is an arbitrary time scale, 𝑌 ∈ℱ𝑛
ℝ is a fuzzy state variable, and 𝐴𝑘 ∈ 𝐶prd(𝕋 , ℱ𝑛

ℝ), 𝐵𝑘 ∈ 𝐶prd(𝕋 , ℱ𝑛×𝑚
ℝ ), Ψ ∈ℱ𝑚

ℝ is a fuzzy 
control function, 𝑌 (𝑡+

𝑘
) and 𝑌 (𝑡−

𝑘
) stand for the right and the left limit of 𝑌 (𝑡) at 𝑡 = 𝑡𝑘, and 𝐹𝑘 are the continuous fuzzy functions that 

satisfy some further specific conditions. We will examine an impulsive switched system on time scales and obtain finite-time stability 
results for a such problem by constructing a common fuzzy Lyapunov quadratic function on time scales.
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