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ABSTRACT
In the present study, we introduce two new operational matrices of frac-
tional Legendre function vectors in the sense of generalized Caputo-type
fractional derivative and generalized Riemann–Liouville-type fractional
integral operators. The derivative and integral operational matrices devel-
oped in the sense of Caputo and Riemann–Liouville operators are special
cases of our proposed generalized operational matrices for β , η = 1. Then,
we present a numerical method that is dependent on the generalized
derivative and integral operational matrices. The applicability and accu-
racy of the presented method is tested by solving various problems and
then comparing the results obtained otherwise by using various numeri-
cal methods including spectral collocation methods, spectral Tau method,
stochastic approach, and Taylor matrix approach. Moreover, our presented
method transforms the problems into Sylvester equations that are easily
solvable by using MATLAB or MATHEMATICA. We believe that the newly
derived generalized operational matrices and the presented method are
expected to be further used to formulate and simulate many generalized
Caputo-type fractional models.
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1. Introduction

Historically on 30 September 1695, the intellectual debate between two renowned mathematicians,
L’Hospital and Leibniz gave birth to the topic of fractional calculus. Formany years, it was considered
a mathematical curiosity without applications in physical sciences and other science-related dis-
ciplines. In 1823, the first notable application of fractional operators had been reported in Abel’s
solution to the so-called tautochrone problem: finding the curve such that the time needed for a par-
ticle to descend from a given position to the bottom of the curve (assuming there is no friction) is
independent of position (see [21]). However, the topic which was predicted by Leibniz a paradox has
nowadays evolved and attracted the interests of many researchers working in various disciplines of
engineering and sciences (see [5–7,15,23]).

The fractional derivative has not a unique definition like classical derivatives. Various fractional
derivative operators, such as Riemann–Liouville (RL), Hadamard, Caputo, Hilfer, and many others
have been successfully utilized in solving various problems of mathematics. Among them, the most
studied operators are RL andCaputo that include fractional integrals. The fractional integral operator
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in RL sense is defined as

RLJδa+u(z) = 1
�(δ)

∫ z

a
(z − x)δ−1u(x) dx, z > a, δ > 0.

Consequently, the fractional derivative operators in RL and Caputo sense are defined as

RLDδ
a+u(z) = Dn

RLJ
n−δ
a+ u(z)

= 1
�(n − δ)

dn

dzn

∫ z

a
(z − x)n−δ−1u(x) dx, z > a,

CDδ
a+u(z) =RL Jn−δ

a+ Dnu(z)

= 1
�(n − δ)

∫ z

a
(z − x)n−δ−1u(n)(x) dx, z > a,

(1)

respectively, where n − 1 < δ < n, n ∈ N, and δ > 0. However, the fractional derivative operator in
Caputo sense has been preferably used in the fractional modelling of physical phenomena due to its
compatibility to model them with integer-order initial or boundary conditions. In addition to that, it
has some properties similar to integer-order derivatives. For instance, the Caputo operator satisfies

RLJδa+CDδ
a+u(z) = u(z) −

n−1∑
l=0

u(l)(a)
l!

(z − a)l, z > a, n − 1 < δ < n, (2)

and

CDδ
a+B = 0, B is constant. (3)

Recently, generalized fractional integral operators (GFIO) were defined by introducing the fractional
integral of a given function related to another function in the following way (see [17,20,26]).

Definition 1.1: The GFIO of order δ > 0 of the function u is defined as

Jδ,ηa+ u(z) = η1−δ

�(δ)

∫ z

a
xη−1(zη − xη)δ−1u(x) dx, z > a, η > 0, (4)

provided the integral exists.

Accordingly, the corresponding generalized fractional derivative operators (GFDO) in RL and
Caputo type sense for n − 1 < δ < n, n ∈ N can be defined as follows.

Definition 1.2: The GFDO of order δ > 0 of a function u in RL type sense is defined as (see [18])

RLDδ,η
a+ u(z) = ηδ−n+1

�(n − δ)

(
z1−η d

dz

)n ∫ z

a
xη−1(zη − xη)n−δ−1u(x) dx, z > a ≥ 0, η > 0. (5)

Definition 1.3: TheGFDOof order δ > 0 of a functionu inCaputo-type sense is defined as (see [16])

CDδ,η
a+ u(z) =

(
RLDδ,η

a+

[
u(t) −

n−1∑
l=0

u(l)(a)
l!

(t − a)l
])

(z), z > a ≥ 0, η > 0. (6)

On the other hand, to simulate fractional models numerically, spectral methods are efficient, reli-
able, and stable numerical tools that have been implemented to solve numerically various types of
fractional differential equations (FDEs) that include Caputo derivative, see [4,10,14,25,27,28,30].



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 3

The framework of these methods is based on fractional-order derivative operational matrices or
fractional-order integral operational matrices of orthogonal polynomials.

Generalization is a very common and vital phenomenon in mathematics. We are always inter-
ested in finding an abstract structure that can be analysed for itself and which covers many useful
examples as special cases. So, in this study, we introduce generalized algorithms which cover the
results discussed in [29] as special cases. Specifically, the fractional integration operationalmatrix [29,
Theorem 4.5] and the fractional differentiation operational matrix [29, Theorem 4.7] are partic-
ular cases of our proposed operational matrices for η = 1. In addition, our proposed numerical
algorithm is capable to solve fractionalmodels which are based either onCaputo-fractional derivative
or modified generalized Caputo-fractional derivative.

Based on the generalized proposed algorithms, our first motivation in this study is to solve the
FDEs that include the modified GFDO of Caputo type introduced by Odibat and Baleanu in 2020
(see [22]). The second motivation is to introduce a generalized numerical method which covers the
results of [29] as special cases and produces more accurate numerical results as compared to spec-
tral methods, like spectral Tau and spectral collocation. The framework of our presented method is
somewhat similar to spectralmethods, however, the need of the residual functions and the collocation
points are not required in our approach to generate the system of algebraic equations like spectral Tau
and spectral collocation methods. So by implementing the presented approach, we can transform the
problems into algebraic equations of Sylvester type without computing the residuals and collocating
the equations at suitable collocation points. Consequently, we obtain better accuracy in the approxi-
mate results as compared to the other numerical techniques, like spectral Tau method [25], function
approximation theory approach [14], Bessel collocation method [31], Taylor matrix method [13],
stochastic technique [3], and Chelyshkov collocation methods [4,27]. The other prominent aspects
of the presented study is the development of two new operational matrices that are derived by using
the modified GFDO of Caputo-type and GFIO of RL-type. In addition, according to our study, this
is the first result, where numerical simulations of FDEs with modified GFDO of Caputo-type are
executed by using operational matrices (OMs) of orthogonal polynomials.

The manuscript is organized as follows: The modified GFDO of Caputo-type and some of its use-
ful properties are listed in Section 2. The representation of a square integrable function in terms of
basis of the fractional Legendre vector function (LVF) is studied in Section 3. Section 4 is devoted
to the development of operational matrices of GFIO and GFDO of fractional LVF. The outline of the
presented numerical method is studied in Section 5. The applicability and accuracy of the presented
method is tested and analyzed by solving various problems and comparing the obtained results to
other existing numerical methods in Section 6. Finally, the proposed study is concluded in Section 7.

2. Newmodified GFDO of Caputo-type

The fractional-order operators in its generic form defined in (4), (5), and (6) are significantly influ-
enced by the parameters, δ and η, therefore they have been extensively utilized in fractional-order
modelling to explain various physical phenomena, see [1,8,9,11,12,16,32]. However, the GFDO
defined in (5) and (6) do not satisfy a very useful generalized rule as in (2). So, in 2020, Odibat
and Baleanu [22] presented the new modified GFDO of Caputo-type whose properties are somehow
similar to the properties of Caputo operator, given in (1).

Definition 2.1: The new modified version of GFDO of Caputo-type of a function u is defined by
(provided it exists)

CDδ,η
a+ u(z) = ηδ−n+1

�(n − δ)

∫ z

a
xη−1(zη − xη)n−δ−1

(
x1−η d

dx

)n
u(x) dx, z > a ≥ 0, η > 0, (7)

where n − 1 < δ < n is the order of the modified GFDO.
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We have the following useful observations for the modified GFDO of Caputo-type:

CDδ,η
a+
(
zη − aη

)ρ =

⎧⎪⎨⎪⎩
ηδ �(ρ + 1)

�(ρ − δ + 1)
(zη − aη)ρ−δ , ρ ∈ R+ and ρ ≥ �δ�,

0, ρ ∈ R+ and ρ < �δ�.
(8)

The modified GFDO of Caputo-type has linear operation

CDδ,η
a+

⎛⎝ n∑
j=1

ajuj(z)

⎞⎠ =
n∑
j=1

ajCDδ,η
a+ uj(z). (9)

Definition 2.2: The following is the definition of the beta function which plays an important role in
the computation of the fractional derivative of power functions:

B(x, y) =
∫ 1

0
zx−1(1 − z)y−1 dz, Re(x) > 0, Re(y) > 0. (10)

3. Fractional LVF and its properties

In 2011, Rida and Yousef [24] derived fractional extensions of Legendre polynomials (LPs) by apply-
ing Rodrigues’ formula. However, the proposed extension in [24] is not easy to use for computational
purposes due to the complexity involved in its construction. So considering the computational diffi-
culties, Kazem and coauthors in 2013 introduced the fractional LVF which are the natural extension
of LPs (see [19]). In this section, some necessary properties of fractional LVF are recalled.

3.1. Properties of fractional LVF

The fractional LVF can be computed by using the following relation (see [19]). For easiness, the
notation FLβ

k (z) is used to indicate fractional LVF:

FLβ

k+1(z) = (2k + 1)(2zβ − 1)
k + 1

FLβ

k (z) − k
k + 1

FLβ

k−1(z), k ∈ N,

FLβ
0 (z) = 1, FLβ

1 (z) = 2zβ − 1.
(11)

Equation (11) can also be written as

FLβ

k (z) =
k∑

s=0
�(s,k)zsβ ,

�(s,k) = (−1)s+k �(1 + s + k)
�(1 − s + k)(�(1 + s))2

.

(12)

The orthogonality conditions with respect to the weight function w(z) = zβ−1 are

∫ 1

0
FLβ

k (z)FLβ

k′(z)w(z) dz =

⎧⎪⎨⎪⎩
1

β(2k + 1)
, for k = k′,

0, for k �= k′.
(13)
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3.2. Function approximations

Any function u ∈ L[0, 1] can be expressed in terms of basis of the fractional LVF in the form

u(z) =
∞∑
k=0

akFL
β

k (z). (14)

Using (13), we can easily compute ak as

ak = β(2k + 1)
∫ 1

0
u(z)FLβ

k (z)w(z) dz, k ∈ N0. (15)

For fixedM, we may express (14) as

u(z) 	
M∑
k=0

akFL
β

k (z) = ϒT	(u), (16)

where

ϒT = [a0, a1, . . . , aM]

and

	(z) = [FLβ
0 (z), FLβ

1 (z), FLβ
2 (z), . . . , FLβ

M(z)]T . (17)

4. Fractional LVF OMs of GFIO andmodified GFDO

Lemma 4.1: The modified generalized fractional-order derivative of FLβ

k (z) defined in (12) can be
computed by

CDδ,η
0+ FL

β

k (z) =
k∑

s=0
�(s,k)η

δ �(sβ/η + 1)
�(sβ/η − δ + 1)

zβs−ηδ , η,β ∈ R+, δ > 0. (18)

Proof: Using (8), (9), and (12), the result can be proved. �

Lemma 4.2: The generalized fractional-order integral of the function (zη − aη)ρ in RL-type can be
computed by

Jδ,ηa+
(
zη − aη

)ρ = η−δ �(ρ + 1)
�(ρ + δ + 1)

(
zη − aη

)ρ+δ , z > a ≥ 0, η ∈ R+, δ > 0. (19)

Proof: Using the substitution ξ = xη−aη

zη−aη into (4), then using the definition of the beta function (10),
the result can be proved. �

Corollary 4.3: For δ > 0, s ∈ N, and β ∈ R+, we have

Jδ,η0+ (z)βs = η−δ �(βs/η + 1)
�(βs/η + δ + 1)

zβs+ηδ , η > 0. (20)

Lemma 4.4: The generalized fractional-order integral in RL sense of FLβ

k (z) defined in (12) can be
computed by

Jδ,η0+ FLβ

k (z) =
k∑

s=0
�(s,k)η

−δ �(sβ/η + 1)
�(sβ/η + δ + 1)

zβs+ηδ , η ∈ R+. (21)
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Proof: Applying linearity of fractional-order integral of RL-type to (12), we have

Jδ,η0+ FLβ

k (z) =
k∑

s=0
�(s,k)J

δ,η
0+ zβs. (22)

Using (20), the result can be proved. �

Lemma 4.5: For δ > 0 and β ∈ R+, we have

zsβ+δη 	
M∑
j=0

bjFL
β
j (z), η > 0,

bj = β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + r + 1) + δη

, j = 0, 1, . . . ,M.

Proof: Using (M + 1) terms of the fractional LVF, we may approximate zsβ+δη as

zsβ+δη 	
M∑
j=0

bjFL
β
j (z). (23)

Using (15), we may determine bj as

bj = β(2j + 1)
∫ 1

0
FLβ

j (z)zsβ+δηzβ−1 dz

= β(2j + 1)
j∑

r=0

(−1)j+r�(j + r + 1)
�(j − r + 1)(�(r + 1))2

∫ 1

0
zsβ+δη+β−1+rβ dz

= β(2j + 1)
j∑

r=0

(−1)j+r�(j + r + 1)
�(j − r + 1)(�(r + 1))2

1
sβ + δη + β + rβ

. (24)

Equation (24) can also be expressed as

bj = β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + r + 1) + δη

. (25)

Equations (23) and (25) prove the result. �

Lemma 4.6: For δ > 0 and β ∈ R+, we have

zsβ−δη =
M∑
j=0

e′jFL
β
j (z), η > 0,

e′j = β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + 1 + r) − δη

, j = 0, 1, . . . ,M.
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Proof: Using (M + 1) terms of the fractional LVF, we may approximate zsβ−δη as

zsβ−δη 	
M∑
j=0

e′jFL
β
j (z). (26)

Using (15), we may compute e′j as

e′j = β(2j + 1)
∫ 1

0
FLβ

j (z)zsβ−δηzβ−1 dz

= β(2j + 1)
j∑

r=0

(−1)j+r�(j + r + 1)
�(j − r + 1)(�(r + 1))2

∫ 1

0
zsβ−δη+β−1+rβ dz

= β(2j + 1)
j∑

r=0

(−1)j+r�(j + r + 1)
�(j − r + 1)(�(r + 1))2

1
sβ − δη + β + rβ

. (27)

Equation (27) can also be written as

e′j = β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + 1 + r) − δη

. (28)

Equations (26) and (28) prove the result. �

4.1. New generalized OMs of GFIO of RL-type andmodified GFDOs of Caputo-type

This section deals with the construction of the OMs of fractional LVF in the sense of GFIO of RL-type
and modified GFDO of Caputo type (Figures 1, 2, and 4).

Theorem 4.7: If 	(z) is a fractional LVF, then

Jδ,η0+ 	(z) 	 Pδ,η
(M+1,M+1)	(z), (29)

where Pδ,η is the (M + 1) × (M + 1) operational matrix of fractional-order integration of order δ > 0
in GFIO sense defined as

Pδ,η
(M+1,M+1) =

i∑
s=0

�i,j,s, i = 0, 1, . . . ,M, j = 0, 1, . . . ,M, (30)

where

�i,j,s = β
(
2j + 1

) j∑
r=0

(−1)i+s+j+rη−δ�(i + s + 1)�(j + r + 1)�(βs/η + 1)
�(i − s + 1)(�(s + 1))2�(j − r + 1)

×(�(r + 1))2�(βs/η + δ + 1)β (s + r + 1) + δη

. (31)
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Proof: By applying the GFIO defined in (4) to (12), we have

Jδ,η0+ FLβ
i (z) =

i∑
s=0

�(s,i)J
δ,η
0+ (zsβ). (32)

Using Corollary 4.3, (32) can be expressed as

Jδ,η0+ FLβ
i (z) =

i∑
s=0

�(s,i)η
−δ �(βs/η + 1)

�(βs/η + δ + 1)
zβs+δη. (33)

Using (M + 1) terms of the fractional LVF, zsβ+δη can be approximated as

zsβ+δη 	
M∑
j=0

bjFL
β
j (z). (34)

Using Lemma 4.5, (34) can be expressed as

zsβ+δη =
M∑
j=0

⎛⎝β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + r + 1) + δη

⎞⎠ FLβ
j (z). (35)

Using (12) and (35) in (33), we have

Jδ,η0+ FLβ
i (z) 	

i∑
s=0

(−1)i+s�(i + s + 1)
�(i − s + 1)(�(s + 1))2

η−δ �(βs/η + 1)
�(βs/η + δ + 1)

M∑
j=0

⎛⎝β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + r + 1) + δη

⎞⎠ FLβ
j (z). (36)

Equation (36) can further be written as

Jδ,η0+ FLβ
i (z) 	

M∑
j=0

⎛⎝ i∑
s=0

β
(
2j + 1

) j∑
r=0

(−1)i+s+j+rη−δ�(i + s + 1)�(j + r + 1)
�(i − s + 1)(�(s + 1))2�(j − r + 1)(�(r + 1))2

× �(βs/η + 1)
�(βs/η + δ + 1)β (s + r + 1) + δη

)
FLβ

j (z)

=
M∑
j=0

( i∑
s=0

�i,j,s

)
FLβ

j (z), i, j = 0, 1, . . . ,M, (37)

where �i,j,s is given in (31). Now (37) in vector form can be written as

Jδ,η0+ FLβ
i (z) 	

[ i∑
s=0

�i,0,s,
i∑

s=0
�i,1,s,

i∑
s=0

�i,2,s · · · ,
i∑

s=0
�i,M,s

]
	(z). (38)

Hence the result is proved. �

Remark 4.8: The fractional-order integration operational matrix derived in [2] is a particular case
of our derived operational matrix in Theorem 4.7 for β = η = 1.
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Theorem 4.9: If 	(z) is a fractional LFV, then

CDδ,η
0+ 	(z) 	 Hδ,η

(M+1,M+1)	(z), (39)

whereHδ,η
(M+1,M+1) is the (M + 1) × (M + 1) operationalmatrix of fractional-order derivatives of order

δ > 0 in modified GFDO sense defined as

Hδ,η
(M+1,M+1) =

i∑
s=�δη/β�

ω(i,j,s), i = �δη/β�, . . . ,M, j = 0, . . . ,M, (40)

where

ωi,j,s = β
(
2j + 1

) j∑
r=0

(−1)i+s+j+rηδ�(i + s + 1)�(j + r + 1)�(βs/η + 1)
�(i − s + 1)(�(s + 1))2�(j − r + 1)(�(r + 1))2

×�(βs/η − δ + 1)β (s + r + 1) − δη

. (41)

Proof: By applying the modified GFDO defined in (7) to (12), we have

CDδ,η
0+ FL

β
i (z) =

i∑
s=0

�(s,i)CDδ,η
0+ (zsβ). (42)

Using Lemma 4.1, (42) can be expressed as

CDδ,η
0+ FL

β
i (z) =

i∑
s=�δη/β�

�(s,i)η
δ �(sβ/η + 1)
�(sβ/η − δ + 1)

zsβ−δη. (43)

Using (M + 1) terms of the fractional LVF, zsβ−δη can be approximated as

zsβ−δη 	
M∑
j=0

e′jFL
β
j (z). (44)

Using Lemma 4.6, (44) can be expressed as

zsβ−δη =
M∑
j=0

⎛⎝β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + r + 1) − δη

⎞⎠ FLβ
j (z). (45)

Using (12) and (45) in (43), we have

CDδ,η
0+ FL

β
i (z) 	

i∑
s=�δη/β�

(−1)i+s�(i + s + 1)
�(i − s + 1)(�(s + 1))2

ηδ �(βs/η + 1)
�(βs/η − δ + 1)

M∑
j=0

⎛⎝β
(
2j + 1

) j∑
r=0

(−1)(j+r)�(j + r + 1)
�(j − r + 1)(�(r + 1))2β (s + r + 1) − δη

⎞⎠ FLβ
j (z). (46)

Equation (46) can further be written as

CDδ,η
0+ FL

β
i (z) 	

M∑
j=0

⎛⎝ i∑
s=�δη/β�

β
(
2j + 1

) j∑
r=0

(−1)i+s+j+rηδ�(i + s + 1)�(j + r + 1)
�(i − s + 1)(�(s + 1))2�(j − r + 1)(�(r + 1))2
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× �(βs/η + 1)
�(βs/η − δ + 1)β (s + r + 1) − δη

)
FLβ

j (z)

=
M∑
j=0

⎛⎝ i∑
s=�δη/β�

ωi,j,s

⎞⎠ FLβ
j (z), i = �δη/β�, . . . ,M, j = 0, 1, . . . ,M, (47)

where ωi,j,s is given in (41). Now (47) in vector form can be written as

CDδ,η
0+ FL

β
i (z) 	

⎡⎣ i∑
s=�δη/β�

ωi,0,s,
i∑

s=�δη/β�
ωi,1,s,

i∑
s=�δη/β�

ωi,2,s, . . . ,
i∑

s=�δη/β�
ωi,M,s

⎤⎦	(z). (48)

Hence the result is proved. �

Remark 4.10: The fractional-order derivative operational matrix derived in [25] is a particular case
of our derived operational matrix in Theorem 4.9 for β = η = 1.

Remark 4.11: The fractional-order derivative operational matrix derived in [19] is a particular case
of our derived operational matrix in Theorem 4.9 for η = 1.

5. Outline of themethod

In this section, the applicability of the newly derived generalized OMs is ensured by constructing a
numerical method that is entirely dependent on the OMs.

Consider the following generalized form of FDEs corresponding to the initial conditions (ICs):

CDδ,ηu(z) = f
(
z, u(z),CDδ1,η1u(z),CDδ2,η2u(z), . . . ,CDδn,ηnu(z)

)
, u(k)(0) = gk, k = 0, 1, . . . , n.

(49)
Consider the approximation

CDδ,ηu(z) = ϒT	(z). (50)

Applying the GFIO of order δ to (50) and the initial conditions defined in (49), we have

u(z) = ϒTJδ,η	(z) +
n∑

k=0

gkzk. (51)

In the light of (29), we can write (51) as

u(z) 	 ϒTPδ,η
(M+1,M+1)	(z) +

n∑
k=0

gkzk. (52)

Approximating the series terms
∑n

k=0 gkz
k by using fractional LVF, we may write (52) as

u(z) = ϒTPδ,η
(M+1,M+1)	(z) + GT	(z). (53)
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The derivative terms of (49) can be approximated by using (39) and (53) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDδ1,η1u(z) = ϒTPδ,η
(M+1,M+1)H

δ1,η1
(M+1,M+1)	(z) + GTHδ1,η1

(M+1,M+1)	(z),

CDδ2,η2u(z) = ϒTPδ,η
(M+1,M+1)H

δ2,η2
(M+1,M+1)	(z) + GTHδ2,η2

(M+1,M+1)	(z),

...
...

...

CDδn,ηnu(z) = ϒTPδ,η
(M+1,M+1)H

δn,ηn
(M+1,M+1)	(z) + GTHδn,ηn

(M+1,M+1)	(z),

and

f (z) = BT	(z).

(54)

Now putting (50) and (54) in (49), we have

ϒT	(z) = ϒTPδ,η
(M+1,M+1)

(
Hδ1,η1

(M+1,M+1) + Hδ2,η2
(M+1,M+1) + · · · + Hδn,ηn

(M+1,M+1)

)
	(z)

+ GT
(
Hδ1,η1

(M+1,M+1) + Hδ2,η2
(M+1,M+1) + · · · + Hδn,ηn

(M+1,M+1)

)
	(z) + BT	(z). (55)

For computational purposes, we may write (55) in a simplified form as

ϒT − ϒTPδ,η
(M+1,M+1)Ĥ = GTĤ + BT , (56)

where Ĥ = (Hδ1,η1
(M+1,M+1) + Hδ2,η2

(M+1,M+1) + · · · + Hδn,ηn
(M+1,M+1)). Equation (56) is a Sylvester-type

matrix equation. The approximate solution of the generalized fractional problem (49) can be deter-
mined by putting the values of the unknown vector ϒT in (53).

6. Applications of themethod

In this section, we solve various fractional-order problems that include the modified GFDO to
determine the accuracy and efficiency of our presented method (PM). The accuracy of PM is also
highlighted by comparing the results obtained otherwise in the literature using various numerical
methods.

Example 6.1: Consider the problem in modified GFDO of Caputo-type [14]

CDδ,ηu(z) = a1CDδ1,η1u(z) + a2CDδ2,η2u(z) + a3CDδ3,η3u(z)

+ a4CDδ4,η4u(z) + F(z), z ∈ [0, 1], 0 < δ < 2,

u(0) = 0, u′(0) = 0. (57)

The source term is

F(z) = 4 z − z2 − 6776 z
3
2

4503
+ 42 z5 − 14 z6 + z7 + 1516 z

13
2

5629
− 2.

The exact solution at δ = 2, a1 = a3 = −1, a2 = 2, a4 = 0, δ1 = 0, δ2 = 1, δ3 = 1
2 , η = η1 = η2 =

η3 = η4 = 1 is

u(z) = z7 − z2.

We now test the applicability and numerical efficiency of our PM. The results are studied for various
values ofM, β , and δ. We see that as the number of terms of the fractional LVF is increased, the abso-
lute error between the approximate solution and the exact solution is reduced, see Table 1. Also, by
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Figure 1. (a) Fractional LVF at β = 0.5 and various choices of k. (b) Fractional LVF at k = 4 and various choices of β .

Figure 2. Exact and approximate plots at β = 0.5 andM = 4.

Table 1. Comparison of absolute errors of Example 6.1 at β = η = 1 and various values ofM.

z M = 4 [14] M = 4 PM M = 6 [14] M = 6 PM M = 7 [14] M = 7 PM

0.2 8.44 × 10−2 1.32 × 10−2 4.4 × 10−3 3.0 × 10−4 2.81025203108243 × 10−15 0
0.4 3.501 × 10−2 1.05 × 10−2 7.9 × 10−3 3.5 × 10−4 6.63358257213531 × 10−15 0
0.6 6.734 × 10−2 3.49 × 10−2 1.43 × 10−2 3.4 × 10−4 3.27515792264421 × 10−15 0
0.8 1.0234 3.87 × 10−2 2.14 × 10−2 6.9 × 10−4 4.25770529943748 × 10−14 0
1 1.6700 7.8 × 10−2 2.80 × 10−2 1.03 × 10−3 2.43819897540083 × 10−13 0

increasing the values ofM, the accuracy in the approximate results is increased, see Figure 3. We also
compute the absolute errors at various fractional values of β and obtain promising results, see Table 2.
The impact of the fractional parameter δ is also analyzed by computing the approximate solution at
its various values, see Figure 4. We observe that as δ → 2, the approximate solution approaches the
exact solution of the problem (57). The effect of the real number β is also examined by computing
the approximate solution at its various values and observing a great resemblance between the exact
and approximate solutions, see Figure 5. Moreover, the results determined otherwise in [14] are also
compared with the results obtained by using our PM.We observe that our results are more promising
for this particular problem, see Table 1.

Example 6.2: Consider the problem in modified GFDO of Caputo-type [25]

CDδ,ηu(z) = −u(z), z ∈ [0, 1], 0 < δ < 2,
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Figure 3. Approximate plots of Example 6.1 at various values ofM.

Figure 4. Approximate plots of Example 6.1 at various values of δ.

Table 2. Absolute errors computed for Example 6.1 atM = 10 and various values of β .

z β = 0.7 β = 0.8 β = 0.9 β = 1.8 β = 1.9 β = 2

0.2 2.5 × 10−5 1.3 × 10−4 1.7 × 10−4 1.3 × 10−4 9.1 × 10−5 4.03 × 10−6

0.4 9.2 × 10−5 5.2 × 10−4 7.2 × 10−4 3.9 × 10−4 2.5 × 10−4 9.13 × 10−6

0.6 2.04 × 10−5 1.2 × 10−3 1.8 × 10−3 6.3 × 10−4 3.9 × 10−4 1.54 × 10−5

0.8 3.6 × 10−4 2.2 × 10−3 3.2 × 10−3 8.9 × 10−4 5.5 × 10−4 2.23 × 10−5

1 5.8 × 10−4 3.5 × 10−3 5.4 × 10−3 1.2 × 10−3 7.4 × 10−4 3.10 × 10−5

u(0) = 1, u′(0) = 0. (58)

If we choose δ > 1, then the condition u′(0) = 0 is applicable. The exact solution is

u(z) =
∞∑
k=0

(−zδ
)k

�(δk + 1)
.
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Figure 5. Approximate plots of Example 6.1 atM = 10 and various values of β .

Figure 6. Approximate plots of Example 6.2 at various values ofM.

For δ = 1 = η, the exact solution is given as u(z) = exp(−z), and for δ = 2, η = 1, the exact solution
is given as u(z) = cos(z).We solve (58) for various values ofM,β , η, and δ. In Table 3, we highlight the
numerical efficiency of our PM by doing the comparison between the results computed by using our
PM and themethod presented in [25].We also examine the applicability of themethod by computing
the approximate solution at various values of M and the fractional parameter δ. We observe that as
M is increased, the accuracy in the approximate results is also increased, see Figure 6. Moreover, as
δ → 1, the approximate solution approaches the exact solution of the problem (58), see Figure 7.
We also determine the effects of β at various β = δ by computing the absolute errors, see Table 4.
The impact of the parameter η is also analyzed by computing the approximate solution at its various
values and obtaining promising results, see Figures 9 and 10. We also compute the absolute errors at
various values ofM and observe that the amount of absolute errors is decreasing between exact and
approximate solutions with the increase in the values ofM, see Figure 8.

Example 6.3: Consider the Bagley–Torvik problem in modified GFDO of Caputo-type [3,13,19,31]

CDδ,ηu(z) = a1CDδ1,η1u(z) − a2u(z) + F(z), z ∈ [0, 1], 0 < δ < 2,

u(0) = 1 = u′(0).
(59)
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Table 3. Comparison of absolute errors for Example 6.2 computed by using our PM and the method in [25] atM = 10, β = η = 1, and various values of δ.

δ z = 0.1 z = 0.1PM z = 0.3 z = 0.3PM z = 0.5 z = 0.5PM z = 0.7 z = 0.7PM z = 0.9 z = 0.9PM

1.2 3.1 × 10−3 2.2 × 10−5 2.8 × 10−3 1.9 × 10−5 4.5 × 10−3 1.2 × 10−3 3.6 × 10−3 1.6 × 10−5 1.8 × 10−3 2.0 × 10−3

1.4 1.0 × 10−3 1.6 × 10−5 7.0 × 10−4 1.4 × 10−5 1.3 × 10−3 7.9 × 10−6 1.1 × 10−3 1.1 × 10−5 2.4 × 10−4 1.4 × 10−5

1.6 3.0 × 10−4 7.5 × 10−6 1.3 × 10−4 6.3 × 10−6 3.1 × 10−4 3.4 × 10−6 3.0 × 10−4 4.9 × 10−6 6.2e × 10−7 6.1 × 10−6

1.8 6.1 × 10−5 2.2 × 10−6 1.4 × 10−5 1.8 × 10−6 4.9 × 10−5 9.2 × 10−7 5.3 × 10−5 1.4 × 10−6 8.8 × 10−6 1.7 × 10−6

0.2 2.9 × 10−1 2.3 × 10−3 4.5 × 10−1 1.9 × 10−2 7.4e × 10−1 5.3 × 10−2 3.7 × 10−3 1.0 × 10−1 2.0 × 10−1 1.8 × 10−1

0.4 3.9 × 10−1 7.0 × 10−4 5.1 × 10−1 1.0 × 10−3 7.3e × 10−1 1.5 × 10−3 3.3 × 10−1 2.4 × 10−3 2.2 × 10−1 8.2 × 10−3

0.6 6.7 × 10−3 3.8 × 10−4 2.0 × 10−5 4.4 × 10−4 5.2e × 10−3 3.3 × 10−4 4.4 × 10−3 3.42 × 10−4 4.6 × 10−3 3.4 × 10−4

0.8 1.1 × 10−3 1.1 × 10−4 2.1 × 10−4 1.1 × 10−4 8.4 × 10−4 7.8 × 10−5 8.7 × 10−4 9.5 × 10−5 5.8 × 10−4 1.2 × 10−4
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Figure 7. Approximate plots of Example 6.2 at various values of δ.

Figure 8. Error plots of Example 6.2 at various values ofM.

Table 4. Absolute errors computed for Example 6.2 atM = 10 and various values of β = δ.

z β = δ = 0.5 β = δ = 0.75 β = δ = 0.67 β = δ = 1.25 β = δ = 1.75 β = δ = 1.5

0.2 4.21 × 10−7 2.51 × 10−11 6.98 × 10−10 8.74 × 10−17 2.67 × 10−18 1.18 × 10−17

0.4 1.80 × 10−5 6.88 × 10−9 1.07 × 10−7 4.16 × 10−16 9.56 × 10−19 1.46 × 10−16

0.6 1.60 × 10−4 1.90 × 10−7 2.02 × 10−6 2.01 × 10−14 3.26 × 10−18 3.28 × 10−16

0.8 7.48 × 10−4 1.97 × 10−6 1.61 × 10−5 1.01 × 10−12 4.16 × 10−18 7.98 × 10−16

1 2.47 × 10−3 1.21 × 10−5 8.05 × 10−5 2.16 × 10−11 2.95 × 10−17 1.22 × 10−14

The source term is

F(z) = 1 + z.

The exact solution of (59) at δ = 2, δ1 = 1.5, a1 = −1 = a2, and η = η1 = 1 is

u(z) = 1 + z. (60)
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Figure 9. Approximate plots of Example 6.2 atM = 10, δ = 0.87, and various values of η.

Figure 10. Approximate plots of Example 6.2 atM = 10, δ = 0.97, and various values of η.

We solve (59) by using our PM and compare the results with the methods proposed in [3,13,31]
to demonstrate the applicability and numerical efficiency of our method. We observe that our PM
exhibits more accurate results with high precision in the numerical solutions, see Tables 5, 6, and
Figure 11. Even at low values ofM, we achieve promising results. The applicability of the parameters
β and δ is also examined by computing the approximate solution at their various noninteger values.
We observe that even at a very low value of M, the exact solution of the problem (59) is obtained,
see Figure 12. We also examine the effects of the real number β for various δ = β at M = 2 and
observe the great resemblance of the approximate solution with the exact solution, see Figure 13. The
numerical efficiency is also highlighted by computing the approximate solution at various values of
M, it is noted that with the increase in the values ofM, the approximate solutionmatches exactly with
the exact solution of (59), see Figure 13 and Table 5.

Example 6.4: Consider the problem in modified GFDO of Caputo-type [14]

CDδ,ηu(z) = a1CDδ1,η1u(z) + a2CDδ2,η2u(z) + a3CDδ3,η3u(z)
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Figure 11. Approximate results of Example 6.3 are compared with the results of [3, Example 2].

Figure 12. (a) Approximate plots of Example 6.3 at M = 2, β = 1, and various values of η. (b) Approximate plots of Example 6.3
atM = 2, β = 1 = η, and various values of δ.

Figure 13. (a) Approximate plots of Example 6.3 at β = η = 1 and various values of M. (b) Approximate plots of Example 6.3 at
M = 2, η = 1, and various values of δ = β .

+ a4CDδ4,η4u(z) + F(z), z ∈ [0, 1], 0 < δ < 2,

u(0) = 0, u′(0) = 0. (61)

The source term is

F(z) = 6z + z3 − 12
�
( 7
3
)z 4

3 + 6
�
( 10
3
)z 7

3 .
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Table 5. Comparison of absolute errors for Example 6.3
at η = 1, β = 1, and various values ofM.

z M = 10 using [3]

M = 2, 4,
6, 8, 10
using PM

0 2.30 × 10−2 0
0.1 2.69 × 10−2 0
0.2 3.13 × 10−2 0
0.3 3.45 × 10−2 0
0.4 3.45 × 10−2 0
0.5 2.87 × 10−2 0
0.6 1.36 × 10−2 0
0.7 1.49 × 10−2 0
0.8 2.30 × 10−2 0
0.9 2.69 × 10−2 0
1.0 3.13 × 10−2 0

Table 6. Comparison of approximate solutions for Example 6.3.

z
Exact

solution
PM at
M = 2

Method
in [13] at
M = 6

Method
in [31] at
M = 6

0.2 1.20 1.20 1.20 1.20
0.4 1.40 1.40 1.40 1.40
0.6 1.60 1.60 1.60 1.60
0.8 1.80 1.80 1.80 1.80
1.0 2.00 2.00 2.00 2.00

The exact solution of (61) at δ = 2, η1 = 1, a1 = a3 = −1, a2 = 0, a4 = 2, δ1 = 0, δ2 = 2
3 , and δ3 =

5
3 is

u(z) = z3.

Here forM = 3, we have

	(z) =

⎛⎜⎜⎝
1

2 z − 1
6 z2 − 6 z + 1

20 z3 − 30 z2 + 12 z − 1

⎞⎟⎟⎠ , ϒ =

⎛⎜⎜⎝
3.0000000
3.0000000
0.0000000

−0.0000000

⎞⎟⎟⎠ , G =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ,

P2,1
(3+1,3+1) =

⎛⎜⎜⎝
0.1666667 0.2500000 0.0833333 0

−0.0833333 −0.1000000 0 0.0166667
0.0166667 0 −0.0238095 0

0 0.0071429 0 −0.0111111

⎞⎟⎟⎠ .

(62)

By putting the values of (62) into (53), the exact solution u(z) = z3 of (61) is obtained. We analyse
the applicability and the numerical efficiency of our PM by solving (61) at various values of M, and
comparing the results with the results obtained in [14].We observe that asM increased, the proposed
method produces efficient numerical results, see Figure 14 and Table 7.

Example 6.5: Consider the problem in modified GFDO of Caputo-type [19]

CDδ,ηu(z) − u(z) = 1, z ∈ [0, 1], 0 < δ ≤ 1,

u(0) = 0.
(63)
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Figure 14. Approximate and exact plots of Example 6.4 at δ = 2, η = 1, β = 1, and various values ofM.

Table 7. Comparison of absolute errors of Example 6.4 by using PM and the method in [14].

z Exact solution M = 2 [14] M = 2 PM M = 3 [14] M = 3 PM

0.2 0.0080 0.0614 0.0291 2.55004350968591 × 10−16 0
0.4 0.0640 0.1541 0.0885 2.77555756156289 × 10−16 0
0.6 0.2160 0.3339 0.1239 3.33066907387547 × 10−16 0
0.8 0.5120 0.6488 0.0875 4.44089209850063 × 10−16 0
1 1.0000 1.1468 0.0689 6.66133814775094 × 10−16 0

Table 8. Error table of Example 6.5 atM = 10 and various values of β = δ.

z β = δ = 0.75 β = δ = 0.5 β = δ = 0.67

0.2 4.27 × 10−11 5.87 × 10−7 9.24 × 10−10

0.4 8.3 × 10−9 2.10 × 10−5 1.40 × 10−7

0.6 2.45 × 10−7 3.01 × 10−4 2.87 × 10−6

0.8 2.73 × 10−6 1.57 × 10−3 2.48 × 10−5

1 1.78 × 10−5 5.70 × 10−3 1.33 × 10−4

The exact solution of (63) at δ = η = 1 is

u(z) =
∞∑
k=1

zδk

�(δk + 1)
.

In (63), we analyze the effects of the real number β and the fractional parameter δ by computing
the approximate solution and determining the absolute errors at their various noninteger values. We
observe that at various values of β and δ, the exact and approximate solutions show great resemblance
with each other, see Figures 15–17.We also obtain promising results by calculating the amount of the
absolute errors atM = 10 and various values of β = δ, see Table 8.

Example 6.6: Consider the problem in modified GFDO of Caputo-type [27]

CDδ,ηu(z) = aCDδ1,η1u(z) − u(z) + F(z), z ∈ [0, 1], 0 < δ1 < δ < 1,

u(0) = 0.
(64)
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Figure 15. Exact and approximate plots of Example 6.5 atM = 3, δ = 0.9, and various values of β .

Figure 16. Exact and approximate plots of Example 6.5 atM = 4, δ = 0.9, and various values of β .

The source term is

F(z) = 5 z
3
2

2
+ z

5
2 + 15

√
π z

9
4

8�
( 13
4
) .

The exact solution of (64) at δ = 1, a = −1, and δ1 = 1
4 is

u(z) = z2
√
z.

We solve (64) at various values of β andM to demonstrate the applicability of our PM. We compare
the results computed by using our PM with the results obtained in [27] and [4] at various values of β
andM, see Table 9. We observe that the errors computed in terms of L∞ and L2 by using our method
are very less than those computed by using the methods presented in [27] and [4]. This highlights the
efficiency of our method for this problem. Note that the symbol ‘−′ means that the results forM are
unavailable for the methods [27] and [4].
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Figure 17. Exact and approximate plots of Example 6.5 atM = 7, β = 1, and various values of δ.

Table 9. Approximate results of Example 6.5 at various values ofM and β .

Our Method Talaei’s [27] Al-Sharif’s [4]

M β L∞ L2 L∞ L2 L∞ L2

4 1 5.433 × 10−5 7.81 × 10−5 1.21 × 10−3 5.92 × 10−4 3.82 × 10−4 3.81 × 10−4

6 0.5 2.56 × 10−16 2.22 × 10−16 – – – –
8 0.5 7.82 × 10−17 5.55 × 10−17 5.80 × 10−5 2.50 × 10−5 1.18 × 10−7 4.06 × 10−7

16 0.25 5.55 × 10−17 6.03 × 10−17 2.45 × 10−6 9.89 × 10−7 8.13 × 10−17 5.36 × 10−17

20 0.25 3.33 × 10−16 3.52 × 10−16 8.59 × 10−7 3.42 × 10−7 1.78 × 10−15 0

7. Conclusion

In the present work, we introduced new generalized derivatives and integral operational matrices for
the fractional LVF in the sense of generalized Caputo type fractional derivatives and generalized Rie-
mann–Liouville type fractional integral operators. The operational matrices developed in the senses
of Caputo and Riemann–Liouville are special cases of our newly proposed operational matrices for
β = η = 1. Based on the generalized operational matrices, we introduced a numerical method for
solving FDEs that include generalized Caputo-type fractional derivatives. The proposed method is
fully dependent on the operational matrices and producesmore accurate results as compared to spec-
tral Tau and spectral collocationmethods. The results computed by using our proposedmethod have
been compared with the results obtained by using the spectral Taumethod [25], function approxima-
tion theory [14], Bessel collocationmethod [31], Taylormatrixmethod [13], stochastic technique [3],
and Chelyshkov collocation methods [4,27]. The comparison shows that the proposed method pro-
duced highly accurate results and only a small number of fractional LVF terms are required to
obtain satisfactory results. Finally, the proposed method has the advantage of transforming FDEs
into Sylvester type equations that are easy to solve by using any computational software.
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