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Abstract
In this paper, a nonlinear integro-dynamic equation on time scales with local initial
condition is considered. The purpose of this paper is to prove existence and uniqueness
of solutions and to investigate qualitative properties of solutions of this equation such as
boundedness, dependence of solutions on initial conditions, functions, and parameters,
and Ulam stability. The analysis is based on the Krasnoselskiı̆ fixed point theorem and
Gronwall-type dynamic inequalities. For the illustrative purpose of our main results,
examples on a nonstandard time scale domain are provided.

Keywords Integro-dynamic equations · Gronwall inequality · Time scales ·
Existence and uniqueness · Dependence of solutions · Hyers–Ulam stability ·
Hyers–Ulam–Rassias stability
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1 Introduction

The theory of time scales is a recently developed area. The objective of this theory is to
unify the existing theory of continuous and discrete calculus and extend these theories
to hybrid continuous-discrete domains. Dynamic equations on time scales have the
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potential to describe both continuous and discrete processes. Hence, it became possi-
ble to study continuous-discrete time hybrid processes as a single whole. The study
of dynamic equations has inspired numerous researchers and has become a prominent
field of research. On the other hand, equations that contain both derivatives and inte-
grals of the unknown function, called integro-differential equations, have been taken
up by a large number of researchers, and the study of these equations has grown so
extensively that it is now one of the most important subjects in the field of mathemat-
ical analysis. Indeed, there are many practical situations in which integro-differential
equations give a significantly better model than differential or integral equations.
Integro-differential equations appear quite naturally in mathematical modelling of
several real-world phenomena including cancer treatment [13], ecology [25], engi-
neering [34], epidemiology [16], finance [6, 22], and image processing [1]. Motivated
by a large number of important applications in many real-world processes, the theory
of integro-differential equations is now well developed.

Recently, there is a trend of studying integro-differential equations in the time scale
domain, so-called integro-dynamic equations. This is mainly because of the great
use of integro-dynamic equations in describing several nonlocal continuous-discrete
hybrid phenomena. Adivar and Raffoul [3], using the topological degree method and
Schaefer’s fixed point theorem, deduced the existence of periodic solutions of nonlin-
ear system of integro-dynamic equations on periodic time scales and provided several
applications to scalar integro-dynamic equations. Also, Adivar et al. [2] employed
Schauder’s fixedpoint theorem togeneralise and improve results of [17, 23] for systems
of nonlinear Volterra integro-differential and integro-difference equations for the time
scale domain. Their work requires less restrictive assumptions than the one for con-
tinuous and discrete cases. Lupulescu et al. [19] studied several qualitative properties,
including asymptotic stabilities and boundedness of solutions of Volterra integro-
dynamic equations. Also, Younus and Rahman [40] obtained results of controllability,
observability, and stability for a linear system of regressive Volterra integro-dynamic
equations. Sevinik-Adigüzel et al. [27] proved the existence of a unique solution of
Volterra integro-dynamic equations employing a suitable fixed point theorem in the
setting of a complete b-metric space.

Xing et al. [38], by combining themonotone iterativemethodwith contractionmap-
ping principle, studied classical solutions of the nonlinear integro-dynamic equation
on a time scale T of the type

x�(t) = F
(

t, x(t),
∫ t

0
K(t, s)x(s)�s

)
, t ∈ J ,

x(0) = x0,

where J = [0, a] ∩ T for 0, a ∈ T, F : J × R × R → R and K : J × J → R are
continuous functions.

In 2011, an improvement and generalization of the results of [38] was offered by
Liu et al. [18]. By replacing p ∈ Crd(T,R) on time scales with p ∈ L1

T
(T,R), they

extended the exponential function ep and studied weak solutions of the nonlinear
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integro-dynamic equation of the type

x�(t) + p(t)xσ (t) = F
(

t, x(t),
∫ t

0
K(t, s)W(s, x(s))�s

)
, t ∈ T, a ≤ t < b,

x(a) = x0,

where T is a bounded time scale with a = inf T, b = supT, and the functions
F : T × R × R → R, W : T × R → R are �-measurable in T, locally Lipschitz
continuous, and K ∈ Crd(T × R,R).

The notion of Ulam stability has a wide range of applications in various fields,
including numerical analysis, optimization, control theory, neural network etc., when
it is quite difficult to find an analytical solution. Ulam stability theory provides an
essential tool for investigating the analytical solution as well as a reliable method to
approximately solve any dynamic problem. Thus, to study approximate behavior of
dynamic equations, one needs to study the aspect of Ulam-type stability. Ulam stabil-
ity for integro-differential equations have been studied in several papers, [10, 14, 15,
26, 35] to mention a few. Further, many authors have investigated various stability of
integro-dynamic equations [4, 24, 39, 40]. Shah and Zada [30] established Ulam sta-
bility of a nonlinear Volterra integro-dynamic equation and its adjoint equation by the
integrating factor method. It is noteworthy that, recently, in a series of papers, Shah et
al. have performed an interestingUlam stability analysis of several equations including
nonlinear impulsive delay dynamic equations on time scales [31, 32], mixed integral
dynamic equations with instantaneous and noninstantaneous impulses [28], nonlin-
ear Volterra impulsive integro-delay dynamic equations [33], nonlinear Hammerstein
impulsive integro-dynamic equations with delay [29], and nonlinear delay differen-
tial equations with fractional integrable impulses [41]. Meanwhile, Hoa et al. [5, 12,
20, 36] investigated several interesting properties, including Ulam stability and data
dependence of solutions of various types of fuzzy fractional differential equations.

It is well known that solutions of dynamic equations on time scales depend on the
data like initial conditions, functions, and parameters (constants) which appear on
the right-hand side of the equation. Evidently, we get different solutions to the same
dynamic equation for different data. Thus, from an application and theoretical point of
view, it is interesting and reasonably important to know how a solution of a dynamic
equation changes if these data change slightly. To the best of our information, up till
now, very few papers are available in the literature discussing data dependence of
integro-dynamic equations. All these works made us motivated to study qualitative
aspects of nonlinear integro-dynamic equations. In this paper, we made an attempt to
investigate results concerning existence, uniqueness, data dependence, and Ulam-type
stability of nonlinear integro-dynamic equations (NIDEs) of the form

x�(t) + p(t)xσ (t) = F
(

t, x(t),
∫ t

t0
H(t, s, x(s))�s

)
, t ∈ I

κ , (1)

subject to the initial condition

x(t0) = x0 ∈ R
n, (2)
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where I := [t0, T ] ∩ T with a time scale T ⊂ R, t0, T ∈ T with t0 < T , x : I → R
n

is an unknown function to be determined, xσ = x ◦ σ , x� is the delta derivative of x ,
p : I → R is regressive and rd-continuous,F : I×R

n ×R
n → R

n is rd-continuous in
its first variable and continuous in its second and third variables,H : I× I×R

n → R
n

is rd-continuous in its first and second variables and continuous in its third variable.
In addition, both F and H are assumed to be nonlinear functions.

The innovative idea in the present paper is to consider a new type of nonlinear
integro-dynamic equations on time scales (1)–(2) and then, by employing a Gronwall-
type dynamic inequality, investigate all qualitative properties mentioned above, with
just Lipschitz-type conditions on functions F and H involved in the equation. The
main advantage of employing the Gronwall-type dynamic inequality is that it demands
fewer restrictions on the functions involved in the equation than any other approach.

The present paper is divided into six sections. After this introduction, in Sect. 2,
preliminary notions pertinent to this paper are given. In Sect. 3, we derive an equivalent
integral equation to the dynamic problem (1)–(2) and prove existence and uniqueness
of solutions to the dynamic problem (1)–(2). Results of boundedness and data depen-
dence of solutions are derived in Sect. 4. Section 5 deals with the investigation of Ulam
stability for the dynamic problem (1)–(2). Here, with the help of MATLAB®code, we
provide a graph depicting the solution. Finally, conclusions and remarks on further
study are added in Sect. 6.

2 Preliminaries

In what follows, T denotes a time scale, which is an arbitrary nonempty closed subset
of the set of real numbers R. Below we summarize some notions connected to the
theory of time scales, which are pertinent to the present paper. These materials are
standard and can be found in [7, 8]. For a given time scale T, we derive a new set Tκ

as follows: Tκ = T \ {maxT} if maxT < ∞, otherwise Tκ = T.

Definition 2.1 We say that f : T → R
n is delta differentiable at t ∈ T

κ if there exists
f �(t) ∈ R

n , a so-called delta derivative of f , with the following property: For any
ε > 0 there is a neighbourhood N of t such that

‖ f (σ (t)) − f (s) − f �(t)(σ (t) − s)‖n ≤ ε
∣∣σ(t) − s

∣∣ for all s ∈ N .

Definition 2.2 We say that f : T → R
n is rd-continuous if it is continuous at every

right-dense point or maximal point in T and its left sided limits exist at left-dense
points in T. The symbol Crd(T,Rn) will be used for the set of all such functions.

Definition 2.3 We say that F : T → R
n is an antiderivative of f : T → R

n if
F�(t) = f (t) for all t ∈ T

κ . In this case, we define the Cauchy delta integral of f by

∫ t

t0
f (s)�s := F(t) − F(t0), where t0 ∈ T.
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Definition 2.4 We say that p : T → R is regressive if 1+ μ(t)p(t) 
= 0 for all t ∈ T,
where μ : T → R

+ is the graininess function. The symbol R(T,R) will be used for
the set of all rd-continuous regressive functions.

Definition 2.5 We say that p : T → R is positively regressive if 1+ μ(t)p(t) > 0 for
all t ∈ T. The symbolR+(T,R)will be used for the set of all rd-continuous positively
regressive functions.

Definition 2.6 For p ∈ R(T,R), the generalized exponential function ep(t, s) on the
time scale T is defined as

ep(t, s) :=

⎧⎪⎪⎨
⎪⎪⎩
exp

(∫ t

s

(
Log|1 + μ(τ)p(τ )|

μ(τ)

)
�τ

)
if μ(τ) 
= 0,

exp

(∫ t

s
p(τ )�τ

)
if μ(τ) = 0.

For p, q ∈ R(T,R), we define the following.

p ⊕ q := p + q + μpq, �p := −p

1 + μp
, p � q := p ⊕ (�q).

Remark 2.1 Below we state some of the properties of the exponential function that are
used in our investigation. For p ∈ R(T,R) and r , s, t ∈ T, we have

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(s, t) = e�p(t, s);
(iii) ep(t, s) = 1/ep(s, t);
(iv) ep(t, r)ep(r , s) = ep(t, s).

We recall the extended Gronwall inequality, which is an essential tool in our inves-
tigation.

Theorem 2.1 (See [37, Theorem 2]) Let y, f ∈ Crd(T,R+) with f a nondecreasing
function and g, h ∈ R+(T,R) with g ≥ 0, h ≥ 0. If

y(t) ≤ f (t) +
∫ t

a
h(s)

[
y(s) +

∫ s

a
g(τ )y(τ )�τ

]
�s for t ∈ T

κ ,

then the following two inequalities hold:

(a) y(t) ≤ f (t)
[
1 + ∫ t

a h(s)eh+g(s, a)�s
]

for t ∈ T
κ .

(b) y(t) ≤ f (t)eh+g(t, a) for t ∈ T
κ .

In particular, if f (t) ≡ 0, then y(t) ≡ 0 for t ∈ T
κ .

Theorem 2.2 (Arzelà–Ascoli theorem (See [42, Lemma 4])) A subset of Crd(I,R)

which is both equicontinuous and bounded is relatively compact.

Theorem 2.3 (Krasnoselskiı̆ fixed point theorem (See [21, Theorem 11.2])) Let B be
a Banach space, C ⊂ B nonempty, closed and convex. Let F1, F2 : C → B be such
that:
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(i) F1 is continuous and F1(C) is relatively compact.
(ii) F2 is a contraction.
(iii) F1(x) + F2(y) ∈ C for all x, y ∈ C.

Then there exists x ∈ C such that F1(x) + F2(x) = x.

In this paper, we employ the following notations. Let Crd(I,R
n) be the family of

all rd-continuous functions defined on I and taking values in R
n , which is a Banach

space when coupled with the norm ‖ · ‖ defined as ‖x‖ := sup
t∈I

‖x(t)‖n . We let

E := sup
s,t∈I

|e�p(t, s)| > 0

and

η := sup
t∈I

∫ t

t0
|e�p(t, s)|�s > 0.

3 Existence and Uniqueness of Solutions

Lemma 3.1 Let p ∈ R(I,R), t0 ∈ T, x0 ∈ R
n, F ∈ Crd(I × R

n × R
n,Rn), and

H ∈ Crd(I× I×R
n,Rn). Then, x is a solution of (1)–(2) if and only if x is a solution

of the delta integral equation

x(t) = e�p(t, t0)x0 +
∫ t

t0
e�p(t, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s, t ∈ I

κ .

(3)

Proof Suppose x is a solution of (1)–(2). Then, multiplying (1) by ep(t, t0), we get

(ep(·, t0)x)�(t) = ep(t, t0)F
(

t, x(t),
∫ t

t0
H(t, τ, x(τ ))�τ

)
.

Now, integrating the above equation from t0 to t and then multiplying both sides by
e�p(t, t0), we obtain (3). Conversely, suppose that (3) holds. Letting t = t0 in (3), we
find that (2) holds. Then, multiplying (3) by ep(t, t0), we obtain

ep(t, t0)x(t) = x(t0) +
∫ t

t0
ep(s, t0)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s.

Now, differentiating the above equation, we get

(ep(·, t0)x)�(t) = ep(t, t0)F
(

t, x(t),
∫ t

t0
H(t, τ, x(τ ))�τ

)
.

That is, (1) holds. This completes the proof. ��
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Throughout this paper, we use following hypotheses to obtain our results:

(H1) Let p ∈ R(I,R).
(H2) LetF : I×R

n ×R
n → R

n be rd-continuous in its first variable and continuous
in its second and third variables such that

‖F(t, x1, y1) − F(t, x2, y2)‖n ≤ LF (t)(‖x1 − x2‖n + ‖y1 − y2‖n) (4)

for all t ∈ I and xi , yi ,∈ R
n (i = 1, 2), where LF ∈ R+(I,R+).

(H3) Let H : I × I × R
n → R

n be rd-continuous in its first and second variables
and continuous in its third variable such that

‖H(t, s, x1) − H(t, s, x2)‖n ≤ LH(s)‖x1 − x2‖n (5)

for all t, s ∈ I and xi ∈ R
n (i = 1, 2), where LH ∈ R+(I,R+).

(H4) η <
1

L∗
F (1 + L∗

H(T − t0))
, where L∗

F := sup
t∈I

LF (t) and L∗
H := sup

s∈I
LH(s).

(H5) E <
1

2L∗
F (T − t0)(1 + L∗

H(T − t0))
, with L∗

F and L∗
Has in (H4).

Theorem 3.2 Suppose (H1) − (H4) hold. If

MF := sup{‖F(s, 0, ψ)‖n : s ∈ I, ψ ∈ R
n} < ∞, (6)

then the dynamic problem (1)–(2) has a unique solution in Crd(I,R
n).

Proof Existence: Consider a subset Br ⊂ Crd such that

Br := {x ∈ Crd(I,R
n) : ‖x‖ ≤ r},

where r = 2(E‖x(t0)‖n + ηMF ). Next, define the operator W : Br → Crd by

W[x](t) = e�p(t, t0)x(t0) +
∫ t

t0
e�p(t, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s.

(7)

Clearly, this opeatorW is well-defined on Br . According to Lemma 3.1, a fixed point
ofW is a solution of (1)–(2). In order to employ the Krasnoselskiı̆ fixed point theorem,
Theorem 2.3, we express (7) as

W[x](t) = W1[x](t) + W2[x](t),

where

W1[x](t) := e�p(t, t0)x(t0) +
∫ t

t0
e�p(t, s)F

(
s, 0,

∫ s

t0
H(s, τ, 0)�τ

)
�s (8)
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and

W2[x](t) :=
∫ t

t0
e�p(t, s)

[
F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)

−F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)]
�s. (9)

We show that W1 : Br → Crd is completely continuous and W2 : Br → Crd is a
contraction. Further, we show that if x, y ∈ Br , thenW1[x]+W2[y] ∈ Br . The proof
will be given in the following steps.
Assertion 1. W1 : Br → Crd is completely continuous.
It is clear that W1 is continuous. We show that W1 is bounded. For x ∈ Br

‖W1[x]‖
= sup

t∈I

∥∥∥∥e�p(t, t0)x(t0) +
∫ t

t0
e�p(t, s)F

(
s, 0,

∫ s

t0
H(s, τ, 0)�τ

)
�s

∥∥∥∥
n

≤ sup
t∈I

{
|e�p(t, t0)|‖x(t0)‖n +

∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)∥∥∥∥
n

�s

}

≤ E‖x(t0)‖n + ηMF .

Thus,W1[x] is bounded for x ∈ Br . Next, for equicontinuity ofW1, let t1, t2 ∈ I and
x ∈ Br . Then

‖W1[x](t2) − W1[x](t1)‖n

≤ |e�p(t2, t0) − e�p(t1, t0)|‖x(t0)‖n

+
∥∥∥∥
∫ t2

t0
e�p(t2, s)F

(
s, 0,

∫ s

t0
H(s, τ, 0)�τ

)
�s

−
∫ t1

t0
e�p(t1, s)F

(
s, 0,

∫ s

t0
H(s, τ, 0)�τ

)
�s

∥∥∥∥
n

≤ |e�p(t2, t0) − e�p(t1, t0)|‖x(t0)‖n

+ |e�p(t2, t0) − e�p(t1, t0)|
∫ t1

t0
|ep(s, t0)|

∥∥∥∥F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)∥∥∥∥
n

�s

+ |e�p(t2, t0)|
∫ max{t1,t2}

min{t1,t2}
|ep(s, t0)|

∥∥∥∥F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)∥∥∥∥
n

�s

≤ |e�p(t2, t0) − e�p(t1, t0)|
(

‖x(t0)‖n + MF
∫ t1

t0
|ep(s, t0)|�s

)

+ MF
∫ max{t1,t2}

min{t1,t2}
|e�p(t2, s)|�s

≤ |e�p(t2, t0) − e�p(t1, t0)| (‖x(t0)‖n + ηMF ) + E MF |t2 − t1|.
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It is seen that the right-hand side of the above inequality tends to zero as |t2− t1| → 0.
Thus, W1[x] is equicontinuous for x ∈ Br , and a standard application of the Arzelà–
Ascoli theorem, Theorem 2.2, guarantees that W1 is compact and subsequently, is
completely continuous.
Assertion 2. W2 : Br → Crd is a contraction.
For x, y ∈ Br , we have

‖W2[x](t) − W2[y](t)‖n

≤
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, x(s),
∫ s

t0
H(s, τ, x(τ ))�τ

)

−F
(

s, y(s),
∫ s

t0
H(s, τ, y(τ ))�τ

)∥∥∥∥
n

�s

≤
∫ t

t0
|e�p(t, s)|LF (s)

(
‖x(s) − y(s)‖n +

∫ s

t0
LH(τ )‖x(τ ) − y(τ )‖n�τ

)
�s

≤
∫ t

t0
|e�p(t, s)|LF (s)(1 + L∗

H(s − t0))‖x(s) − y(s)‖n�s

≤ L∗
F (1 + L∗

H(T − t0))
∫ t

t0
|e�p(t, s)|‖x(s) − y(s)‖n�s

≤ L∗
F (1 + L∗

H(T − t0))
∫ t

t0
|e�p(t, s)|�s‖x − y‖

≤ ηL∗
F (1 + L∗

H(T − t0))‖x − y‖.

In view of (H4), we obtain that W2 is contraction.
Assertion 3. If x, y ∈ Br , then W1[x] + W2[y] ∈ Br .
Let x, y ∈ Br . Then for t ∈ I

‖W1[x](t) + W2[y](t)‖n

=
∥∥∥∥e�p(t, t0)x(t0) +

∫ t

t0
e�p(t, s)F

(
s, 0,

∫ s

t0
H(s, τ, 0)�τ

)
�s

+
∫ t

t0
e�p(t, s)

[
F

(
s, y(s),

∫ s

t0
H(s, τ, y(τ ))�τ

)

−F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)]
�s

∥∥∥∥
n

≤ |e�p(t, t0)|‖x(t0)‖n +
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)∥∥∥∥
n

�s

+
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, y(s),
∫ s

t0
H(s, τ, y(τ ))�τ

)

−F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)∥∥∥∥
n

�s

≤ E‖x(t0)‖n + ηMF + (ηL∗
F (1 + L∗

H(T − t0)))r .
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Using the definition of r and (H4), we write

‖W1[x](t) + W2[y](t)‖n ≤ r for all t ∈ I.

This gives

‖W1[x] + W2[y]‖ ≤ r for x, y ∈ Br .

This shows that W1[x] + W2[y] ∈ Br for x, y ∈ Br .
Thus, all the conditions of Theorem 2.3 are hold and we can deduce that the operator
W = W1 + W2 has a fixed point in Br which is a solution of (1)–(2). It remains to
prove the uniqueness of the solution of (1)–(2).
Uniqueness: Assume that x, y ∈ Br are two solutions of (1)–(2). Then for any t ∈ I,
(H2) and (H3) yield the estimates

‖x(t) − y(t)‖n

≤
∫ t

t0

∣∣e�p(t, s)
∣∣
∥∥∥∥F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)

−F
(

s, y(s),
∫ s

t0
H(s, τ, y(τ ))�τ

)∥∥∥∥
n

�s

≤
∫ s

t0
E LF (s)

(
‖x(s) − y(s)‖n +

∫ s

t0
LH(τ ) ‖x(τ ) − y(τ )‖n �τ

)
�s.

Now, in view Theorem 2.1, we obtain

‖x(t) − y(t)‖n ≤ 0 for all t ∈ I,

that is, x = y. This completes the proof. ��
Remark 3.1 IfH = 0, then Theorem 3.2 coincides with [9, Theorem 4.1].

Corollary 3.1 Suppose (H1) − (H3) and (H5) hold. If (6) holds, then the dynamic
problem (1)–(2) has a unique solution.

Remark 3.2 BothTheorem3.2 andCorollary 3.1 also hold if (H2) and (H3) are replaced
by the following.

(HL2) LetF : I×R
n×R

n → R
n be rd-continuous in its first variable and continuous

in its second and third variables such that

‖F(t, x1, y1) − F(t, x2, y2)‖n ≤ LF (t)(‖x1 − x2‖n + ‖y1 − y2‖n) (10)

for all t ∈ I and ‖xi‖n < r , ‖yi‖n < r (i = 1, 2), with LF ∈ R+(I,R+).
(HL3) LetH : I× I×R

n → R
n be rd-continuous in first and second variables and

continuous in third variable such that

‖H(t, s, x1) − H(t, s, x2)‖n ≤ LH(s)‖x1 − x2‖n (11)
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for all t, s ∈ I and ‖xi‖n < r , ‖yi‖n < r (i = 1, 2), with LH ∈ R+(I,R+).

Remark 3.3 If ‖F(t, u, v)‖n ≤ K for all t ∈ I and u, v ∈ R
n , then based on Theo-

rem 3.2, it is seen that any solution x of (1)–(2) satisfies

‖x(t2) − x(t1)‖n

=
∥∥∥∥e�p(t2, t0)x(t0) +

∫ t2

t0
e�p(t2, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s

−e�p(t1, t0)x(t0) −
∫ t1

t0
e�p(t1, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s

∥∥∥∥
n

≤ |e�p(t2, t0) − e�p(t1, t0)|‖x(t0)‖n

+
∥∥∥∥
∫ t2

t0
e�p(t2, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s

−
∫ t1

t0
e�p(t1, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s

∥∥∥∥
n

≤ |e�p(t2, t0) − e�p(t1, t0)|‖x(t0)‖n

+ |e�p(t2, t0) − e�p(t1, t0)|
∫ t1

t0
|ep(s, t0)|

∥∥∥∥F
(

s, x(s),
∫ s

t0
H(s, τ, x(τ ))�τ

)∥∥∥∥
n

�s

+ |e�p(t2, t0)|
∫ max{t1,t2}
min{t1,t2}

|ep(s, t0)|
∥∥∥∥F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)∥∥∥∥
n

�s

≤ |e�p(t2, t0) − e�p(t1, t0)| (‖x(t0)‖n + E K (T − t0)) + E K |t2 − t1| for all t1, t2 ∈ I.

We now give an example of an NIDE of the type (1) such that all conditions of
Theorem 3.2 are satisfied.

Example 3.3 Let T be the time scale defined as

T :=
∞⋃

k=0

[2k, 2k + 1].

This time scale appears in mathematical models of population dynamics of certain
species that reproduce at discrete time intervals and whose life span is one unit of
time. Consider the NIDE
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x�(t) + xσ (t) = LF sin

(
x(t) +

∫ t

t0
(sin x(s) + cos x(s) + 2t)�s

)
, t ∈ [t0, T ]κ

T
,

(12)

with x0 = 0, where

LF ∈
(
0,

1

(2e)m+1(2m + 1)(4m + 3)

)
. (13)

We take t0 = 0, T = 2m + 1, m ∈ N. Here p(t) ≡ 1. So p ∈ R, and (H1) holds.
Moreover,

H(t, s, x) = sin x + cos x + 2t and F(t, x, y) = LF sin(x + y).

We note that (H2) satisfied, since

|F(t, x1(t), y1(t)) − F(t, x2(t), y2(t))| = LF | sin(x1(t) + y1(t)) − sin(x2(t) + y2(t))|
≤ LF |x1(t) − x2(t) + y1(t) − y2(t)|
≤ LF (|x1(t) − x2(t)| + |y1(t) − y2(t)|).

Further,

|H(t, s, x1(s)) − H(t, s, x2(s))| ≤ | sin x1(s) − sin x2(s)| + | cos x1(s) − cos x2(s)|
≤ 2|x1(s) − x2(s)|.

Hence, (H3) is satisfied with LH = 2. Now, since

η = sup
t∈[0,2m+1]T

∫ t

0
e�1(t, s)�s = (2e)m+1(2m + 1),

we find that (H4) satisfied with LH = 2 and LF given in (13). Thus, all conditions of
Theorem 3.2 are satisfied and therefore, by Theorem 3.2, the NIDE (12) has a unique
solution on [0, 2m + 1]T.

4 Estimate and Data Dependence for Solutions

Throughout the rest of the paper, we denote α = E LF + LH.
Our first result in this section concerns the a priori estimate for the possible solutions
to (1)–(2).

Theorem 4.1 Suppose (H1) − (H3) hold. If x is the solution of (1)–(2) defined by
Theorem 3.2, then

‖x‖ ≤ (E‖x0‖n + ηMF ) eα(T , t0). (14)
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Proof According to Lemma 3.1, x(t) is given by

x(t) = e�p(t, t0)x0 +
∫ t

t0
e�p(t, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s.

We rewrite the above equation as

x(t) = e�p(t, t0)x0 +
∫ t

t0
e�p(t, s)

[
F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)

−F
(

s, 0,
∫ s

t0
H(s, τ, 0)�τ

)]
�s

+
∫ t

t0
e�p(t, s)F

(
s, 0,

∫ s

t0
H(s, τ, 0)�τ

)
�s.

Now, (H2) and (H3) yields

‖x(t)‖n ≤ E‖x0‖n + ηMF +
∫ t

t0
E LF (s)

(
‖x(s)‖n +

∫ s

t0
LH(τ )‖x(τ )‖n�τ

)
�s.

Finally, employing the Gronwall inequality given in Theorem 2.1 (b) and keeping in
mind the increasing nature of the exponential function in the first argument, we obtain

‖x(t)‖n ≤ (E‖x0‖n + ηMF ) eα(T , t0),

and (14) follows easily. ��
Remark 4.1 Under the conditions of Theorem 4.1 with the same calculation, and keep-
ing in mind the inequality from Theorem 2.1 (a), we infer that the solution x of (1)–(2)
satisfies the estimate

‖x‖ ≤ (E‖x0‖ + ηMF )

[
1 +

∫ T

t0
E LF (s)eα(s, t0)�s

]
.

Example 4.2 FromExample 3.3, according to Lemma3.1, the unique solution ofNIDE
(12) is given by

x(t) = LF
∫ t

0
e�1(t, s) sin

(
x(s) +

∫ s

0
[sin(x(τ )) + cos(x(τ )) + 2s]�τ

)
�s

= LF
∫ t

0
e�1(t, s) sin

(
x(s) +

∫ s

0
sin(x(τ ))�τ +

∫ s

0
cos(x(τ ))�τ + 2s2

)
�s.

Keeping in mind (13) and the boundedness of ‘sine’ function, we obtain

‖x‖ ≤ LF (2e)m+1(2m + 1)
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<
1

4m + 3
.

Hence the solution of NIDE (12) is bounded and the bound is
1

4m + 3
.

We now turn our attention to the results concerning dependence of solutions on
various quantities. Below we prove the dependence of solutions on initial conditions.
For this, first we consider the dynamic equation

y�(t) + p(t)yσ (t) = F
(

t, y(t),
∫ t

t0
H(t, s, y(s))�s

)
, t ∈ I

κ , (15)

subject to the initial condition

y(t0) = y0 ∈ R
n . (16)

Theorem 4.3 (Dependence on initial conditions) Assume that the functions F and H
in NIDEs (1) and (15) satisfy (H2) and (H3). If x and y are the solutions of (1)–(2)
and (15)–(16), respectively, then the inequality

‖x − y‖ ≤ E‖x0 − y0‖eα(T , t0) (17)

holds. Additionally, if ‖x0 − y0‖n ≤ δ for some δ > 0, then we have

‖x − y‖ ≤ Eδeα(T , t0). (18)

Proof In view of Lemma 3.1, the solutions x and y of (1)–(2) and (15)–(16), respec-
tively, are given by

x(t) = e�p(t, t0)x0 +
∫ t

t0
e�p(t, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s

and

y(t) = e�p(t, t0)y0 +
∫ t

t0
e�p(t, s)F

(
s, y(s),

∫ s

t0
H(s, τ, y(τ ))�τ

)
�s.

Then for each t ∈ I, we have

‖x(t) − y(t)‖n

≤ |e�p(t, t0)| ‖x0 − y0‖n +
∫ t

t0

∣∣e�p(t, s)
∣∣ ∥∥∥∥F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)

−F
(

s, y(s),
∫ s

t0
H(s, τ, y(τ ))�τ

)∥∥∥∥
n

�s.
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Now, (H2) and (H3) lead to

‖x(t) − y(t)‖n

≤ E ‖x0 − y0‖n

+
∫ t

t0
E LF (s)

(
‖x(s) − y(s)‖n +

∫ s

t0
LH(τ ) ‖x(τ ) − y(τ ))‖n �τ

)
�s.

Employing the Gronwall inequality given in Theorem 2.1 (b) and keeping in mind the
increasing nature of the exponential function in the first argument, we obtain, for all
t ∈ I

‖x(t) − y(t)‖n ≤ E ‖x0 − y0‖n eα(T , t0).

Indeed, (17) and (18) follow from the above inequality. ��
Remark 4.2 Under the conditions of Theorem 4.3 with the same calculation, and keep-
ing in mind the inequality from Theorem 2.1 (a), we obtain the inequality

‖x − y‖ ≤ Eδ

[
1 +

∫ T

t0
E LF (s)eα(s, t0)�s

]
,

where ‖x0 − y0‖n ≤ δ for some δ > 0.

Next, to obtain a result concerning the dependency of solution on functions involved
in the dynamic equation, we consider a variant form of the original NIDEs

z�(t) + p(t)zσ (t) = F̂
(

t, z(t),
∫ t

t0
Ĥ(t, s, z(s))�s

)
, t ∈ I

κ , (19)

subject to the initial condition

z(t0) = z0 ∈ R
n . (20)

Theorem 4.4 (Dependence on functions) Assume that the functions F and H in NIDE
(1) satisfy (H2) and (H3) . Further, assume that there exists a constant S > 0 such
that

‖F(t, u1, v1) − F̂(t, u2, v2)‖ ≤ S

for all t ∈ I and ui , vi ∈ R
n (i = 1, 2). If x and z are the solutions of (1)–(2) and

(19)–(20), respectively, then

‖x − z‖ ≤ (Eδ + ηS) eα(T , t0), (21)

where ‖x0 − z0‖n ≤ δ for some δ > 0.
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Proof Since x and z are the solutions of (1)–(2) and (19)–(20), respectively, using
Lemma 3.1, we write for t ∈ I,

‖x(t) − z(t)‖n

≤ |e�p(t, t0)| ‖x0 − z0‖n

+
∫ t

t0

∣∣e�p(t, s)
∣∣ ∥∥∥∥F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)

−F̂
(

s, z(s),
∫ s

t0
Ĥ(s, τ, z(τ ))�τ

)∥∥∥∥
n

�s

≤ |e�p(t, t0)| ‖x0 − z0‖n

+
∫ t

t0

∣∣e�p(t, s)
∣∣
∥∥∥∥F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)

−F
(

s, z(s),
∫ s

t0
H(s, τ, z(τ ))�τ

)∥∥∥∥
n

�s

+
∫ t

t0

∣∣e�p(t, s)
∣∣
∥∥∥∥F

(
s, z(s),

∫ s

t0
H(s, τ, z(τ ))�τ

)

−F̂
(

s, z(s),
∫ s

t0
Ĥ(s, τ, z(τ ))�τ

)∥∥∥∥
n

�s

≤ E ‖x0 − z0‖n

+
∫ t

t0
E LF (s)

(
‖x(s) − z(s)‖n +

∫ s

t0
LH(τ ) ‖x(τ ) − z(τ ))‖n �τ

)
�s

+ S
∫ t

t0
|e�p(t, s)|�s

≤ E ‖x0 − z0‖n +
∫ t

t0
E LF (s) (‖x(s) − z(s)‖n

+
∫ s

t0
LH(τ ) ‖x(τ ) − z(τ ))‖n �τ

)
�s + ηS.

Employing the Gronwall inequality given in Theorem 2.1 (b) and keeping in mind the
increasing nature of the exponential function in the first argument, we obtain, for all
t ∈ I

‖x(t) − z(t)‖n ≤ (E ‖x0 − z0‖n + ηS) eα(T , t0), (22)

and (21) follows easily. ��
Remark 4.3 Under the conditions of Theorem 4.3 with the same calculation, and keep-
ing in mind the inequality from Theorem 2.1 (a), we obtain the inequality

‖x − z‖ ≤ (Eδ + ηS)

[
1 +

∫ T

t0
E LF (s)eα(s, t0)�s

]
,

where ‖x0 − z0‖n ≤ δ for some δ > 0.
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Finally, to prove the result related with dependence on parameters, we consider
NIDEs involving parameters of the form

x�(t) + p(t)xσ (t) = F
(

t, γ1, x(t),
∫ t

t0
H(t, s, x(s))�s

)
, t ∈ I

κ ; (23)

x�(t) + p(t)xσ (t) = F
(

t, γ2, x(t),
∫ t

t0
H(t, s, x(s))�s

)
, t ∈ I

κ , (24)

subject to the initial condition

x(t0) = x0 ∈ R
n, (25)

where γ1, γ2 ∈ R.

Theorem 4.5 (Dependence on parameters) Let (H3) hold. Assume that there exist
�, �γ > 0 and L̃F ∈ R+(I,R+) such that

‖F(t, γi , u1, v1) − F(t, γi , u2, v2)‖n ≤ �γ L̃F (t) (‖u1 − u2‖n + ‖v1 − v2‖n)

and

‖F(t, γ1, u1, v1) − F(t, γ2, u1, v1)‖n ≤ � |γ1 − γ2|

for all t ∈ I, γi ∈ R and ui , vi ∈ R
n (i = 1, 2). If x1 and x2 are the solutions of

(23)–(25) and (24)–(25), respectively, then

‖x1 − x2‖ ≤ η�|γ1 − γ2|eα̃(T , t0), where α̃ = E�γ L̃F + LH. (26)

Proof Since x1 and x2 are the solutions of (23)–(25) and (24)–(25), respectively, using
Lemma 3.1, we can write for all t ∈ I,

‖x1(t) − x2(t)‖n

=
∥∥∥∥
∫ t

t0
e�p(t, s)

[
F

(
s, γ1, x1(s),

∫ s

t0
H(s, τ, x1(τ ))�τ

)

−F
(

s, γ2, x2(s),
∫ s

t0
H(s, τ, x2(τ ))�τ

)]
�s

∥∥∥∥
n

.

Then

‖x1(t) − x2(t)‖n

≤
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, γ1, x1(s),
∫ s

t0
H(s, τ, x1(τ ))�τ

)

−F
(

s, γ2, x2(s),
∫ s

t0
H(s, τ, x2(τ ))�τ

)∥∥∥∥
n

�s
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≤
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, γ1, x1(s),
∫ s

t0
H(s, τ, x1(τ ))�τ

)

−F
(

s, γ2, x1(s),
∫ s

t0
H(s, τ, x1(τ ))�τ

)∥∥∥∥
n

�s

+
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, γ2, x1(s),
∫ s

t0
H(s, τ, x1(τ ))�τ

)

−F
(

s, γ2, x2(s),
∫ s

t0
H(s, τ, x2(τ ))�τ

)∥∥∥∥
n

�s

≤ �|γ1 − γ2|
∫ t

t0
|e�p(t, s)|�s

+
∫ t

t0
|e�p(t, s)|�γ L̃F (s)

(
‖x1(s) − x2(s)‖n +

∫ s

t0
LH(τ )‖x1(τ ) − x2(τ )‖n

)
�s

≤ η�|γ1 − γ2|
+

∫ t

t0
E�γ L̃F (s)

(
‖x1(s) − x2(s)‖n +

∫ s

t0
LH(τ )‖x1(τ ) − x2(τ )‖n

)
�s.

Employing the Gronwall inequality given in Theorem 2.1 (b) and keeping in mind the
increasing nature of the exponential function in the first argument, we obtain (26). ��
Remark 4.4 Under the conditions of Theorem 4.5 with the same calculation, and keep-
ing in mind the inequality from Theorem 2.1 (a), we obtain the inequality

‖x1 − x2‖ ≤ η�|γ1 − γ2|
[
1 +

∫ T

t0
E�γ L̃F (s)eα̃(s, t0)�s

]
.

5 Ulam Stability

In this section, we shall investigate Ulam stability for NIDE (1). For this, first we shall
introduce the following definitions.

Definition 5.1 We say that NIDE (1) has Hyers–Ulam stability if there exists a real
number CF > 0 such that for each ε > 0 and for each y ∈ C1

rd(I,R
n) satisfying

∥∥∥∥y�(t) + p(t)yσ (t) − F
(

t, y(t),
∫ t

t0
H(t, s, y(s))�s

)∥∥∥∥
n

≤ ε for all t ∈ I
κ ,

(27)

there exists a solution x ∈ Crd(I,R
n) of (1) with

‖y(t) − x(t)‖n ≤ εCF for all t ∈ I.

Here CF is a so-called HUS constant.
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Definition 5.2 We say that NIDE (1) has generalised Hyers–Ulam stability if there
exists a function θF ∈ C(R+,R+) with θF (0) = 0, such that for each y ∈ C1

rd(I,R
n)

satisfying (27), there exists a solution x ∈ Crd(I,R
n) of (1) with

‖y(t) − x(t)‖n ≤ θF (ε) for all t ∈ I.

Definition 5.3 LetN be a family of positive, nondecreasing rd-continuous real-valued
functions defined on I. We say that NIDE (1) has Hyers–Ulam–Rassias stability of
type N if for each ψ ∈ N , there exists CF ,ψ > 0 such that for each y ∈ C1

rd(I,R
n)

satisfying

∥∥∥∥y�(t) + p(t)yσ (t) − F
(

t, y(t),
∫ t

t0
H(t, s, y(s))�s

)∥∥∥∥
n

≤ εψ(t) for all t ∈ I
κ ,

(28)

there exists a solution x ∈ Crd(I,R
n) of (1) with

‖y(t) − x(t)‖n ≤ CF ,ψ ε ψ(t) for all t ∈ I.

Here CF ,ψ is a so-called HURSN constant.

Definition 5.4 LetN be a family of positive, nondecreasing rd-continuous real-valued
functions defined on I. We say that NIDE (1) has generalised Hyers–Ulam–Rassias
stability of type N if for each ψ ∈ N , there exists CF ,ψ > 0 such that for each
y ∈ C1

rd(I,R
n) satisfying

∥∥∥∥y�(t) + p(t)yσ (t) − F
(

t, y(t),
∫ t

t0
H(t, s, y(s))�s

)∥∥∥∥
n

≤ ψ(t) for all t ∈ I
κ ,

(29)

there exists a solution x ∈ Crd(I,R
n) of (1) with

‖y(t) − x(t)‖n ≤ CF ,ψψ(t) for all t ∈ I.

Here CF ,ψ is a so-called GHURSN constant.

Remark 5.1 A function y ∈ C1
rd(I,R

n) is a solution of (28) if there exists a function
G ∈ C1

rd(I,R
n) (which depends on y) such that

(i) ‖G(t)‖n ≤ εψ(t) for all t ∈ I,

(ii) y�(t) + p(t)yσ (t) = F
(

t, y(t),
∫ t

t0
H(t, s, y(s))�s

)
+ G(t) for all t ∈ I

κ .

Theorem 5.1 Let (H1) hold and the functions F and H in NIDE (1) satisfy (H2) and
(H3). Assume that there exists λ > 0 such that for every ψ ∈ N and for all t ∈ I,

∫ t

t0
|e�p(t, s)|ψ(s)�s ≤ λψ(t). (30)
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Then the NIDE (1) has Hyers–Ulam–Rassias stability of typeN with HURSN constant
λeα(T , t0).

Proof Let y ∈ C1
rd(I,R

n) satisfy (28). Then, by Remark 5.1, we have

y�(t) + p(t)yσ (t) = F
(

t, y(t),
∫ t

t0
H(t, s, y(s))�s

)
+ G(t) for all t ∈ I

κ .

Now, Lemma 3.1 implies that

y(t) = e�p(t, t0) y(t0) +
∫ t

t0
e�p(t, s)

[
F

(
s, y(s),

∫ s

t0
H(s, τ, y(τ ))�τ

)
+ G(s)

]
�s,

= e�p(t, t0) y(t0) +
∫ t

t0
e�p(t, s)F

(
s, y(s),

∫ s

t0
H(s, τ, y(τ ))�τ

)
�s

+
∫ t

t0
e�p(t, s) G(s)�s

for all t ∈ I. Then

∥∥∥∥y(t) − e�p(t, t0) y(t0) −
∫ t

t0
e�p(t, s)F

(
s, y(s),

∫ s

t0
H(s, τ, y(τ ))�τ

)
�s

∥∥∥∥
n

≤ ε

∫ t

t0
|e�p(t, s)|ψ(s)�s.

Thus, in view of (30), we obtain

∥∥∥∥y(t) − e�p(t, t0) y(t0) −
∫ t

t0
e�p(t, s)F

(
s, y(s),

∫ s

t0
H(s, τ, y(τ ))�τ

)
�s

∥∥∥∥
n

≤ ελψ(t) (31)

for all t ∈ I. Let x ∈ Crd(I,R
n) be the solution of the dynamic problem

x�(t) + p(t)xσ (t) = F
(

t, x(t),
∫ t

t0
H(t, s, x(s))�s

)
, t ∈ I

κ ,

x(t0) = y(t0).

Then, we have

x(t) = e�p(t, t0) y(t0)

+
∫ t

t0
e�p(t, s)F

(
s, x(s),

∫ s

t0
H(s, τ, x(τ ))�τ

)
�s for all t ∈ I. (32)

From (31), (32), and using (H2) and (H3), we have
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‖y(t) − x(t)‖n (33)

≤
∥∥∥∥y(t) − e�p(t, t0)y(t0) −

∫ t

t0
e�p(t, s)F

(
s, y(s),

∫ s

0
H(s, τ, y(τ ))�τ

)
�s

∥∥∥∥
n

+
∫ t

t0
|e�p(t, s)|

∥∥∥∥F
(

s, y(s),
∫ s

t0
H(s, τ, y(τ ))�τ

)

−F
(

s, x(s),
∫ s

t0
H(s, τ, x(τ ))�τ

)∥∥∥∥
n

�s

≤ ελψ(t) +
∫ t

t0
E LF (s)

(
‖y(s) − x(s)‖n +

∫ s

t0
LH(τ )

[‖y(τ ) − x(τ )‖n
]
�τ

)
�s.

(34)

Employing the Gronwall inequality given in Theorem 2.1 (b) and keeping in mind the
increasing nature of the exponential function in the first argument, we obtain

‖y(t) − x(t)‖n ≤ ελψ(t)eα(T , t0).

This yields

‖y(t) − x(t)‖n ≤ εCF ,ψψ(t) for all t ∈ I,

where CF ,ψ := λeα(T , t0). Thus NIDE (1) has Hyers–Ulam–Rassias stability of type
N with HURSN constant λeα(T , t0). ��
Corollary 5.1 Let (H1) hold and the functions F and H in NIDE (1) satisfy the condi-
tions of Theorem 5.1. Then NIDE (1) has generalized Hyers–Ulam–Rassias stability
of type N with GHURSN constant λeα(T , t0).

Proof Taking ε = 1 in the proof of Theorem 5.1 we obtain that NIDE (1) has gener-
alized Hyers–Ulam–Rassias stability of type N with GHURSN constant λeα(T , t0).
��
Remark 5.2 Employing the inequality fromTheorem 2.1 (a) to (33) we infer that NIDE
(1) has Hyers–Ulam–Rassias stability of typeN as well as generalized Hyers–Ulam–
Rassias stability of type N with

λ

[
1 +

∫ T

t0
E LF (s)eα(T , t0)�s

]

being both the HURSN and GHURSN constant.

Corollary 5.2 Let (H1) hold and the functions F and H in NIDE (1) satisfies (H2) and
(H3). Then NIDE (1) has Hyers–Ulam stable stability with HUS constant ηeα(T , t0).

Proof Take ψ(t) ≡ 1. Then

∫ t

t0
|e�p(t, s)|ψ(s)�s ≤ η for all t ∈ I,



  106 Page 22 of 29 M. Bohner et al.

and from the proof of Theorem 5.1, we obtain

‖y(t) − x(t)‖n ≤ εCF for all t ∈ I. (35)

This proves that (1) has Hyers–Ulam stability with HUS constant CF := ηeα(T , t0).
��

Corollary 5.3 Let (H1) hold and the functions F and H in (1) satisfy (H2) and (H3).
Then (1) has generalized Hyers–Ulam stability of type N .

Proof Define θF (ε) := ε CF . Clearly θF ∈ C(R+,R+) and θF (0) = 0. Then (35)
takes the form,

‖y(t) − x(t)‖ ≤ θF (ε) for all t ∈ I.

This proves that NIDE (1) has generalized Hyers–Ulam stability of type N . ��
Remark 5.3 Employing the inequality fromTheorem 2.1 (a) to (33) we infer that NIDE
(1) has Hyers–Ulam stability as well as generalized Hyers–Ulam stability with

η

[
1 +

∫ T

t0
E LF (s)eα(T , t0)�s

]

being the HUS constant.

The following example illustrates the results obtained in this section.

Example 5.2 Let

T =
∞⋃

k=0

[2k, 2k + 1]

and consider the NIDE

x�(t) + xσ (t) = LF (x(t) + 3)1/2 + LF
∫ t

t0

x(s)

1 + x(s)
�s, t ∈ [t0, T ]κ

T
, (36)

with x(t0) = 0, where

LF ∈
(
0,

1

(2e)m+1(2m + 1)(2m + 2)

)
. (37)

We take t0 = 0, T = 2m + 1, m ∈ N. Here p(t) ≡ 1. So p ∈ R, and (H1) holds.
Moreover,

H(t, s, x) = x

1 + x
and F(t, x, y) = LF ((x + 3)1/2 + y),
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We note that (H2) is satisfied, since

|F(t, x1(t), y1(t)) − F(t, x2(t), y2(t))|
= LF

(∣∣∣(x1(t) + 3)1/2 − (x2(t) + 3)1/2
∣∣∣ + |y1(t) − y2(t)|

)

and, by [7, Corollary 1.68], we can write

|F(t, x1(t), y1(t)) − F(t, x2(t), y2(t))|

≤ LF

(
sup
z∈R

∣∣∣∣ z

(z2 + 3)1/2

∣∣∣∣ |x1(t) − x2(t)| + |y1(t) − y2(t)|
)

≤ LF (|x1 − x2| + |y1 − y2|).

Also,

|H(t, s, x1(s)) − (t, s, x2(s))| =
∣∣∣∣ x1(s)

1 + x1(s)
− x2(s)

1 + x2(s)

∣∣∣∣
=

∣∣∣∣ x1(s) − x2(s)

(1 + x1(s))(1 + x2(s))

∣∣∣∣
≤ |x1(s) − x2(s)|.

Hence, (H3) is satisfied with LH = 1. Further, since

η = sup
t∈[0,2m+1]T

∫ t

0
e�1(t, s)�s = (2e)m+1(2m + 1),

we find that (H4) is satisfied with LH = 1 and LF given in (37). Therefore, all the
conditions of Theorem 3.2 are satisfied. Hence, NIDE (36) has a unique solution. In
fact, by Lemma 3.1, this unique solution is given by

x(t) = LF
∫ t

0
e�1(t, s)

(
(x(s) + 3)1/2 +

∫ s

0

x(τ )

1 + x(τ )
�τ

)
�s.

Further, if y ∈ C1
rd([0, 2m + 1]T,R) satisfies

∣∣∣∣y�(t) + yσ (t) − LF (y(t) + 3)1/2 −
∫ t

0

y(s)

1 + y(s)
�s

∣∣∣∣ ≤ ε,

then by Corollary 5.2, there exists a solution x of NIDE (36) satisfying

|y(t) − x(t)| ≤ ε(2e)m+1(2m + 1)eα(2m + 1, 0),

where α = (2e)m+1LF + 1. Hence, NIDE (36) has Hyers–Ulam stability with HUS
constant (2e)m+1(2m +1)eα(2m +1, 0). We refer to Fig. 1 for a picture of the solution
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Fig. 1 The solution x of (36) with m = 2 and LF = 0.0002

of (36) when m = 2 and LF = 0.0002 (which satisfies (37)). As there is no software
available to solve such problems on time scales, we explain now how we were able
to depict this solution. We used the general-purpose MATLAB® code IDSOLVER by
Gelmi and Jorquera [11], with slight modifications, in combination with manual cal-
culations in order to account for the special structure of the time scale. To begin with,
we replaced the last line in the IDSOLVER with

dy(n) =c(x,y(1)) + d(x) ∗ quadl(@(s)

k(x,s). ∗ ys(s)./(1 + ys(s)),alpha(x),beta(x),TolQuad);

Step 1
First, we solved (36) on [0, 1], with the initial condition x(0) = 0, using the code

xinterval = [01];
n = 1;
InitCond = 0;
c = @(x,y)0.0002. ∗ sqrt(y + 3) − y;
d = @(x)1;
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k = @(x,s)0.0002;
alpha = @(x)0;
beta = @(x)x;
Tol = 1e − 30;
Flag = 0;
idsolver(xinterval,n,InitCond,c,d,k,alpha,beta,Tol,Flag)

This produced the left part of the graph in Fig. 1, as well as the values

x(1) ≈ 0.000218985443791 =: ξ1,

x(1−) ≈ 0.000218972695594 =: ξ−
1 with 1− := 0.999899989999,

which were used to approximate

λ1 :=
∫ 1

0

x(s)

1 + x(s)
�s ≈ 5000

(
ξ1 + ξ1 − ξ−

1

1 − 1−

)
− √

ξ1 + 3

≈0.00015930590286625453724869533495221.

Step 2
Next, we manually solved (36) for t = 1, with the initial condition x(1) = ξ1, so

x(2) =ξ1 + 0.0002
(√

ξ1 + 3 + λ1
)

2
≈0.00028272005469256373461090156373461 =: ξ2.

Step 3
Next, we solved (36) on [2, 3], i.e.,

x ′(t) + x(t) = 0.0002
√

x(t) + 3 + 0.0002λ2 + 0.0002
∫ t

2

x(s)

1 + x(s)
ds,

where

λ2 :=
∫ 2

0

x(s)

1 + x(s)
�s = λ1 + ξ1

1 + ξ1

≈0.00037824340253172780167184558590068,

with the initial condition x(2) = ξ2, using the same code as in Step 1, with obvious
modifications in lines 1, 3, 4, and 7. This produced the middle part of the graph in
Figure 1, as well as the values

x(3) ≈ 0.000323061106953 =: ξ3,

x(3−) ≈ 0.000323058756143 =: ξ−
3 with 3− := 2.999899989999,
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which were used to approximate

λ3 :=
∫ 3

0

x(s)

1 + x(s)
�s = λ2 +

∫ 3

2

x(s)

1 + x(s)
�s

≈5000

(
ξ3 + ξ3 − ξ−

3

3 − 3−

)
− √

ξ3 + 3

≈0.00069021594828844142473145045426559.

Step 4
Next, we manually solved (36) for t = 3, with the initial condition x(3) = ξ3, so

x(4) =ξ3 + 0.0002
(√

ξ3 + 3 + λ3
)

2
≈0.00033481398154801175287459501175287 =: ξ4.

Step 5
Next, we solved (36) on [4, 5], i.e.,

x ′(t) + x(t) = 0.0002
√

x(t) + 3 + 0.0002λ4 + 0.0002
∫ t

4

x(s)

1 + x(s)
ds,

where

λ4 :=
∫ 4

0

x(s)

1 + x(s)
�s = λ3 + ξ3

1 + ξ3

≈0.00101317272046912276598162442032,

with the initial condition x(4) = ξ4, using the same code as in Step 1, with obvious
modifications in lines 1, 3, 4, and 7. This produced the right part of the graph in
Figure 1.

6 Concluding Remark

A new type of nonlinear integro-dynamic equations on time scales (1) was consid-
ered and several qualitative results are derived in an effective way. We have derived
the existence of the solution of this equation using the fixed point theorem of Kras-
noselskiı̆. The uniqueness of solution, dependence of solutions on various data, and
Ulam stability are investigated mainly employing Gronwall-type dynamic inequali-
ties. To illustrate the applicability of the main results of this paper, we have provided
three examples on a nonstandard time scale domain. As there is no software avail-
able to solve such types of integro-dynamic equations on time scales, we rewrote a
MATLAB®code from the literature, ran this code for one of the examples with some
manual calculations, and then plotted the solution. The results obtained in this paper
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are new, original, and could be useful tools for researchers working in related areas.
Moreover, we emphasize that other qualitative properties like oscillation and nonoscil-
lation, asymptotic behaviour, and controllability of solutions would be an interesting
topics for future research.
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