
Animation of a VHDL model in Modelsim using Tcl/Tk                     
 
 

David Sullins and Hardy J. Pottinger 
 

Department of Electrical and Computer Engineering 
University of Missouri - Rolla 

 
 



Page 1 

Abstract 
Visualization of the operation of a processor model is a 
difficult process that can be made more attractive by using 
Tcl/Tk procedures built into Modelsim.  This paper describes 
the use of Modelsim and Tcl/Tk to display and animate a block 
diagram of a synthesizable model of a subset of the 8051 
microcontroller (WIMP51).  The model is being used to 
introduce Electrical and Computer Engineering 
undergraduates at the University of Missouri - Rolla to 
computer architecture and the 8051.  The WIMP51 is binary 
compatible with a subset of the 8051's instructions, can be 
programmed with a standard 8051 assembler, and can be 
realized in a Xilinx 4005 FPGA. 
 
 
1. Introduction 
 
The University of Missouri-Rolla offers a course in 
hardware/software co-design and an associated lab.  The 
students in this course study the 8051 family of 
microcontrollers for most of the course.  However, an 
introduction to computer architecture is provided at the 
beginning of the course.  Since the 8051 has a relatively 
complex architecture, a simple 4-bit processor called the 
Gnome[1] has been used in the past to provide a gentle 
introduction to computer architecture, before the 8051 is 
introduced. 
 
The use of two very different processors in the class has 
caused confusion among students.  Course evaluations reveal 
that many students feel their time was wasted learning the 
Gnome instruction set, only to be told to forget it and learn a 
new instruction set three weeks into the course.  However, the 
Gnome processor has been useful for the purposes of the lab 
portion of the course, since it can easily be simulated in CAD 
tools and implemented in an FPGA.  The 8051 microcontroller 
is complex enough that students might be unprepared to debug 
hardware problems immediately at the beginning of the lab 
course. 
 
To resolve these problems, a replacement processor was 
created, the WIMP51.  It is a simple subset the 8051, lacking 
internal memory, interrupts, and peripherals.  This processor 
was implemented in VHDL using Modelsim and synthesized 
using Leonardo.  A Tcl/Tk-based interface to Modelsim was 
created to allow students to interactively view the dataflow 
through the processor when simulating their own programs.  
This paper will describe the architecture of the WIMP51, the 
Tcl/Tk interface, and how all of this is used in the courses at 
the University of Missouri - Rolla. 
 
2. Processor Architecture 
2.1 Processor Overview 
 
The WIMP51 processor shares several features with the 
Gnome processor it replaces: 
• Simple architecture: The students need to be able to 

comprehend the entire datapath of the processor.  They are 

required to complete exercises where they extend the 
processor with new instructions.  Comprehension of the 
datapath is essential to completing these exercises. 

• Simple timing: All instructions execute in the same amount 
of time.  The WIMP51 processor uses three clock cycles per 
instruction (Fetch, Decode, and Execute in the style of the 
classic Von Neumann machine). 

• Small instruction set: The number of instructions should be 
kept to a minimum in order to keep the design of the 
hardware very straightforward. 

• Synthesizable model: In the lab portion of the course, 
students will simulate the processor interfaced with external 
memory.  Then they will test that same design using an 
FPGA.  A synthesizable simulation model is required for the 
lab. 

 
Additionally, the new WIMP51 has certain features not shared 
with the Gnome: 
• Assembly language 8051 compatibility: Every instruction 

that executes on the WIMP51 has an exact equivalent in the 
8051 instruction set. 

• Machine code 8051 compatibility: Any standard 8051 
assembler can be used to produce the machine code for the 
WIMP51. 

 
2.2 Instruction Set 
 
All WIMP51 instructions are one or two bytes long.  When 
choosing which 8051 instructions would be included in the 
instruction set, only immediate addressed and register 
addressed instructions were considered since the WIMP51 
would include no internal memory or special function 
registers.  To adhere to the three clock cycle 
Fetch/Decode/Execute timing, it would be logical to choose 
one byte instructions.  However, there is no way to load an 
immediate value or perform a jump on an 8051 with only one 
byte instructions.  Since both of these functions were 
considered necessary, two byte instructions were also 
examined.  In the end it was decided to use two byte 
instructions only for two immediate addressed instructions and 
two jump instructions.  All other instructions would be one 
byte long. 
 
After examining the remaining instructions, a minimal subset 
of the interesting instructions was chosen.  The AND, OR, 
XOR, and ADD functions were considered to be the most 
important and form the core of the instruction set.  The SWAP 
A instruction was added later to facilitate the development of a 
laboratory exercise.  The final instruction set can be seen in 
Table 1. 
 
Table 1: WIMP51 Instruction Set 
Instruction Operation 
MOV A, #data A <= data 
MOV A, Rn A <= (Rn) 
MOV Rn, A Rn <= (A) 
ADDC A, #data C,A <= (A) + data + (C) 
ADDC A, Rn C,A <= (A) + (Rn) + (C) 



Page 2 

XRL A, Rn A <= (A) ^ (Rn) 
ANL A, Rn A <= (A) & (Rn) 
ORL A, Rn A <= (A) | (Rn) 
SWAP A A <= (A)3-0 (A)7-4 
SETB C C <= 1 
CLR C C <= 0 
SJMP relative PC <= (PC) + relative 
JZ relative PC <= (PC) + relative if A=0 
 
2.3 Hardware Design 
 
The WIMP51 has eight eight-bit general purpose registers, 
R0-R7.  It also has an instruction register (IR), an auxiliary 
operand register (AUX), an accumulator (ACC), and a 
program counter (PC), all eight bit registers. 
 
Figure 1: WIMP51 Block Diagram 

 
 
In addition to the registers, the WIMP51 has three logic units.  
The control unit (CU) decodes each instruction and controls 
the timing for all the control signals in the processor.  The 
eight-bit PC adder/incrementer (PCALU) takes the PC and the 
AUX as inputs and writes the result into the PC.  The eight-bit 
arithmetic logic unit (ALU) takes input from the ACC and the 
AUX and writes its result into the ACC.  The ALU also 
contains a 1-bit carry register (C) that stores the carry from the 
previous ADDC operation. 
 
A block diagram describing this architecture is shown in 
Figure 1. 
 
In the Fetch clock cycle, a byte of code is fetched from 
external memory into the IR.  The PC is also incremented in 
this clock cycle in preparation for the next instruction fetch. 
 
In the Decode clock cycle, the AUX is possibly loaded with 
the second operand of the instruction.  If the instruction is a 
jump or immediate-addressed instruction, then a second byte 
is loaded from program memory into the AUX, and the PC is 
incremented a second time.  If the instruction is a register 
source instruction, the contents of the appropriate register are 

loaded into the AUX.  Otherwise, nothing occurs in the 
Decode cycle. 
 
In the Execute clock cycle, the destination register is loaded 
with the appropriate value.  For accumulator destination 
instructions, the ALU result is loaded into the accumulator.  
For the MOV Rn, A instruction, the appropriate register is 
loaded with the value of the accumulator.  For the two jump 
instructions, the PC is loaded with the result from adding the 
contents of the PC to the contents of AUX.  See Figure 2 for 
an example timing diagram generated from Modelsim. 
 
The WIMP51 has an eight-bit data input bus, an eight-bit 
address output bus, an eight-bit accumulator output bus, and 
an active-low program memory read control line called PSEN.  
The address bus is always driven with the value in the PC.  
The accumulator bus shows the value in the accumulator to 
verify correct execution of a program. 
 
3. Tcl/Tk interface 
3.1 Tcl/Tk Overview 
 
Tcl (Tool Command Language) is a scripting language created 
by Dr. John K. Ousterhout.  Tk (Tool Kit) is a set of graphical 
extensions to Tcl that provide an easy way of creating and 
manipulating graphical user interfaces.  Together they form 
Tcl/Tk, a scripting language which can run standalone or be 
embedded inside of applications such as Modelsim [2]. 
 
Many people use the Modelsim graphical interface without 
realizing that they are actually interacting with a Tcl/Tk 
interpreter.  The Modelsim command window is a complete 
Tcl interpreter, capable of running any standard Tcl program.  
Additionally, all of the Modelsim windows are actually Tk 
windows and can be modified through standard Tk commands.  
This provides Modelsim with a great flexibility, as the user 
can modify the interface to suit his or her needs. 
 
3.2 Visual WIMP51 Implementation 
 
In the case of the WIMP51, the Tcl/Tk extensions were used 
to create a window that will interactively display the dataflow 
through the processor and highlight the changing register 
values as the user steps one clock cycle at a time or one 
instruction at a time through a program.  Options to view the 
contents of memory, toggle the display of control signals, and 
print the display are included.  An example screenshot is 
shown in Figure 3. 
 
The program used to generate the interactive display is highly 
event-driven.  Tcl provides a command called “trace” which 
allows a procedure to be called every time a variable changes.  
A Modelsim-specific command called “when” is used to copy 
the values of VHDL signals into Tcl variables.  A trace is 
placed on each of these signals to update the display every 
time their values change.  When a register’s value has changed 
since the previous clock cycle, its value is highlighted in red.  
The dataflow through the processor is highlighted in blue.  For 



Page 3 

 
Figure 2: Timing for ADDC A, #9 instruction 

 
 
example, for the execute cycle of the instruction “ADDC A, 
#9” shown in Figure 3 the datapath from the AUX to the ALU 
and from the ACC to the ALU is highlighted.  The display on 
the ALU is also updated and highlighted in red to show that 
the current ALU operation is “ADD.” 
 
4. Class Usage of the Tcl/Tk Interface 
4.1 Laboratory Setup 
 
The students taking the course where the WIMP51 is used 
have already had experience using Design Architect and 
Quicksim II in previous coursework.  For the WIMP51 
experiments, they use QSPro for hardware simulation.  QSPro 
combines Quicksim II, used for schematic simulation, and  
 
Figure 3: Screenshot of Visual WIMP51 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Modelsim, used for VHDL simulation.  The students mostly 
interact with the familiar Quicksim interface, but use 
Modelsim to launch the graphical WIMP51 interface.  They 
also have an opportunity to test the hardware itself in a Xilinx 
XC4005XL FPGA on the XS40 board from the Xess 
Corporation [3]. 
 
4.2 Laboratory Exercises  
 
The WIMP51 processor is currently being used in a lecture 
course and the associated laboratory course at the University 
of Missouri - Rolla.  Two laboratory exercises include the use 
of the WIMP51. 
 



Page 4 

The first laboratory exercise requires the students to write a 
simple WIMP51 program and debug it using QSPro.  Students 
set up QSPro to trace the external signals of the processor, 
give the processor the appropriate inputs, and then use the 
“Visual WIMP51” feature to see the internal processor signals 
and debug their program.  When they have finished debugging 
their program, they print out the traces from QSPro, and write 
in the disassembled instructions. 
 
The second laboratory exercise requires the students to test 
their program from the previous exercise in hardware.  But we 
challenge them by giving them modified hardware.  We 
change the operation of one instruction so that their program 
will not work.  They then have to use a digital oscilloscope to 
analyze what the processor is doing and determine which 
instruction was implemented incorrectly by comparing to the 
traces from the previous exercise.  The students must modify 
their program to work around the hardware bug.  Discovering 
exactly where the hardware bug occurred would be difficult if 
not impossible without having first verified correct operation 
of the program in simulation.  Having a good simulation 
environment assures the students that the problem is caused by 
hardware, not their software. 
 
5. Conclusion 
 
The WIMP51 meets our goal of providing an 8051 subset that 
can be used to teach students the basic concepts of processor 
architecture.  The Tcl/Tk animation of the dataflow through 
the WIMP51 gives the instructor a powerful visual aid when 
describing the operation of the processor.  It also gives the 
students a way of easily verifying correct operation of their 
programs while learning more about what is happening inside 
the processor.  While we used Tcl/Tk as a way to make 
concepts clearer to students, it is also easy to see how a similar 
program could be used to facilitate debugging a complex 
VHDL model.  The embedded Tcl/Tk interpreter makes 
Modelsim an extremely flexible tool. 
 
References 
[1] The Practical Xilinx Designers Lab Book, D. Van den 

Bout, Prentice Hall, 1999 
[2] Tcl Developer Xchange: tcl.activestate.com 
[3] Xess Corporation website: www.xess.com 
 


