
VHDL Model of the Dallas 1-Wire Digital Thermometer

_______________General Description

A VHDL model of the Dallas
Semiconductor 1-Wire Digital
Thermometer (DS1822) has been
developed at the University of Missouri -
Rolla. The model performs all the
functions of the true DS1822 with the
appropriate timing and gives feedback
when errors occur.

Each VHDL DS1822 has a unique 64-bit
serial code, set with a generic, which
allows multiple slaves to function on the
same 1-wire bus. Temperature is
supplied as a real number through an
additional input port.

______________________Applications

The VHDL model of the DS1822 is
designed to allow simulation of
hardware and software designed around
the one-wire temperature device, so a
design can be tested before it is
implemented in hardware.

________________Pin Configurations

Figure 1. Pin configuration

_________________________Features

• Implements all ROM commands of

DS1822 temperature sensor
• Implements all Function commands of

DS1822 temperature sensor
• Unique serial number identifier can

be set for each device
• Temperature can be varied using a

type-real temperature input

_______________Contact Information

Daryl Beetner
University of Missouri-Rolla
Department of Electrical and Computer
Engineering
1870 Miner Circle
Rolla, MO 65409-1060

http://www.ece.umr.edu/courses/ee214

________________Acknowledgements

Most of the timing diagrams shown in later
figures were taken from the Dallas
Semiconductor (now Maxim) DS1822
datasheet available at:

http://pdfserv.maxim-ic.com/arpdf/DS1822.pdf

http://www.ece.umr.edu/courses/ee214
http://pdfserv.maxim-ic.com/arpdf/DS1822.pdf

2

__Pin Descriptions

PIN Name FUNCTION

dq Data input/output pin. Also provides power to the device when used in
parasite power mode.

temp A real type generic input to provide the temperature read by the DS1822
during Convert T function command.

power_supply A string type generic input to indicate the kind of power supply used by the
DS1822.

serial_num A bit_vector type generic input to provide the unique 64-bit serial code for
each device.

____________________ Communication

1-Wire Protocol

Communication occurs via the Dallas 1-
wire interface given in the datasheet of the
DS1822. A brief description of the 1-wire
protocol is provided here. Timing
diagrams are shown in Figures 2-4.

Bus Configuration

All 1-wire devices in a system may
communicate and receive power over a
single line named “dq”. The 1-wire
protocol uses a single bus master (micro-
controller or microprocessor) to control
one or more 1-wire slaves. The DS1822 is
always a slave. One or more devices on
the 1-wire bus can pull the bus low. All
communication between the master and
the slaves takes place using the bit timing
supplied by the master.

Reset and Presence Pulse

The bus master transmits a reset pulse by
pulling the 1-wire bus low for between
480-960 µs. It then releases the bus and
goes into receive mode. The DS1822 waits
for 15-60 µs and then transmits a presence

pulse by pulling the 1-wire bus low for 60-
240 µs.

Time Slots

Communication of individual bits is
achieved through the use of “time slots”,
which allow the data to be transmitted
over the 1-wire bus. Write slots are used
by the bus master to write data to the
slaves (DS1822s). Read slots are started
by the master and allow the slaves to write
information back to the master. Both read
and write time slots are a minimum of 60
µs in duration with a minimum of 1 µs
recovery time between two consecutive
slots. One bit of data is transmitted over
the 1-wire bus per time slot. Any data
transmitted on the 1-wire bus starts with
the least-significant-bit first.

Write Time Slots

There are two types of write slots: Write 0
and Write 1 time slots. The bus master
uses a Write 0 time slot to write a logic 0
to the DS1822 and Write 1 time slot to
write a logic 1. The master writes a 1 by
pulling the 1-wire bus low, then releasing
it within 15 µs, and then lets it stay high
for at least 45 µs. To write a 0, the bus

3

master pulls the line low for 60-120 µs.
The DS1822 samples the 1-wire bus
between 15 and 60 µs after the start of the
time slot. If the bus is high, the DS1822
assumes a 1 has been written, otherwise it
assumes a 0.

Read Time Slots

The master initiates the transfer of each bit
from the DS1822 using read time slots.

The master begins a read time slot by
pulling the 1-wire bus low for a minimum
of 1 µs and then releasing it. The DS1822
can transmit a 1 back to the master by
letting the bus go back high, or can
transmit a 0 by keeping the bus low for a
minimum of 15 µs. The bus master
samples the bus state within 15 µs from
the start of the time slot.

Figure 2. Reset and Presence pulse (From the DS1822 datasheet).

Figure 3. Write 0 and Write 1 time slot (From the DS1822 datasheet).

4

Figure 4. Read 0 and Read 1 time slot (From the DS1822 datasheet).

___Deviations From the True Hardware

Deviations of the VHDL model from the
actual DS1822 hardware are as follows:

1. Each DS1822 has a unique 64-bit
serial code stored in an on-board
ROM. In the VHDL model of
DS1822, a generic signal
“serial_num” is defined with the
architecture, which holds the 64-bit
serial code.

2. Generic power_supply indicates
the kind of power supply (external
or parasite) used by the VHDL
model of the DS1822.

3. During the Convert T command,
the DS1822 temperature sensor
will sense the temperature in its
vicinity and convert it into a digital
value. In the VHDL model of the
DS1822, an input “temp” of type
real is provided, which supplies the
value of the ambient temperature.

___________________Model Operation

The VHDL model is constructed as a
simple state machine, as shown in Figures
5 and 6.

Figure 5. Block diagram of DS1822
model.

5

The state machine has the following four
high-level states:

1. Init state
2. Read state
3. Romcomm state
4. Funccomm state

Each of these high-level states may
contain lower-order sub-states. The default
state is init. In the init state, the slave waits
for the master to send a reset pulse. If a
reset pulse is detected, the model waits for
15-60 microseconds and then transmits a
presence pulse and enters the read state. If
a reset pulse during any operation, the
state machine will go back to the init state,
send a presence pulse, and re-enter the
read state.

Values are read (via write-0 and write-1
time slots) during the read state. The read
state is encountered twice during a
complete command sequence. During each
encounter, the DS1822 model receives an
8-bit command from the master. These bits
are read and placed in the command
register. When the state machine enters the
read state for the first time, it receives a
ROM command from the master and
enters the romcomm state. When it enters
the read state for the second time after a
reset pulse, it receives a function
command from the master and enters the
funccomm state.

In the romcomm state, the DS1822 model
executes the ROM command received in

the previous read state. Each ROM
command is implemented in a different
process. If the command is invalid, the
state machine will re-enter the init state.
Otherwise, after execution of the ROM
command, the state machine will re-enter
the read state so it can receive a function
command from the master.

The state machine will enter the funccomm
state after completing the read state for the
second time, i.e. after completing the
romcomm state and reading in a function
command. The function command
received from the master is executed in the
funccomm state. As in the romcomm state,
each function command is implemented in
a different process and if the command is
invalid the model will re-enter the init
state. After completing a valid function
command, the model will also re-enter the
init state.

State transitions are controlled internally
using control signals. For example, when a
reset pulse is detected, the reset control
signal is asserted, telling the model to
enter the init state. Similar control signals
are generated at the end of ROM and
function commands. The state_trans
process helps decide the next state of the
state machine.

Further details are available in the VHDL
code itself.

6

Figure 6. High-level model of state-machine.

Init

Read

Romcomm Funccomm

7

__8051 Interfacing

Below is a sample program to interface the VHDL model of DS1822 with an 8051 in a
mentor graphics environment.

/* This program performs the following tasks:
1. Issues a reset pulse
2. Checks for the presence pulse
3. Issues a Skip ROM command
4. Issues a Read Scratchpad command
5. Provide read time slots to read first two bytes of scratchpad (byte 0 and byte 1) */

#include <reg51.h>
#include <stdio.h>
#define uchar unsigned char
#define uint unsigned int
#define CLKPERIC 12 // 12 for regular 8051, 6 for 89C51Rx2's
#define FCLK 12 //clock freq in Hz
#define SKIPROM 0xCC
#define READSP 0xBE
sbit OWDQ= P1^5; /* one wire DQ line */

bit reset_1wire(void);
void msec(uint t);
void U60(void);
void OW_writebit(bit b);
bit OW_readbit(void);
void OW_writebyte(uchar c);
uchar OW_readbyte(void);
uchar TempLSB;
uchar TempMSB;

void main(void){
 bit ow_present;
 int temp;
 int tempF;
 init_uart();
 while(1){
 ow_present=reset_1wire();
 if (ow_present) { // a presence pulse given
 OW_writebyte(SKIPROM);
 OW_writebyte(READSP);

8

Sample 8051 Source (continued)

 TempLSB=OW_readbyte(); // storing the byte 0 of scratchpad in TempLSB
 TempMSB=OW_readbyte(); // storing the byte 1 of scratchpad in TempMSB
 }
 msec(1000);
 };
 } // end of main function

/* delay for t msec. Use timer 0 */
void msec(uint t){
#define T1000 (-1000+22)*FCLK/CLKPERIC
 TMOD=(TMOD&0xF0) | 0x01; /* 16bit timer mode */
 while (t>0) { /*delay 1 msec */
 TH0= (T1000) >> 8; /* upper half of -1000 (0xfc) */
 TL0= (T1000) & 0xff; /* lower half of -1000 (0x18) */
 TR0= 1; /* start timer 0 */
 while (~TF0); /* wait for TF0=1 */
 TR0= 0; /* stop timer and clear overflow bit */
 TF0= 0;
 t=t-1;
 }
}

/* use Timer 0 to delay 480 uSec.
*/
void U480(void){
#define T480 (-480+10)*FCLK/CLKPERIC
 TMOD=(TMOD&0xF0) | 0x01; /* 16bit timer mode */
 TH0= (T480) >> 8; /* upper half of -480 */
 TL0= (T480) & 0xff; /* lower half of -480 */
 TF0=0; /* make sure TF0 is clear */
 TR0=1; /* start timer 0 and return*/
 }

/* use Timer 0 to delay 60 uSec.
*/
void U60(void){
#define T60 (-60)*FCLK/CLKPERIC
 TMOD=(TMOD&0xF0) | 0x01; /* 16bit timer mode */
 TH0= (T60) >> 8; /* upper half of -60 */
 TL0= (T60) & 0xff; /* lower half of -60 */
 TF0=0; /* make sure TF0 is clear */
 TR0=1; /* start timer 0 and return*/
 }

9

Sample 8051 Source (continued)

/* Function to write a bit */

void OW_writebit(bit b){
 U60(); /* start 60 us clock */
 OWDQ=0; /* generate clock edge */
 OWDQ=b; /* write bit */
 while(!TF0);
 OWDQ=1;
 TR0=0;
 return;
}

/* Function to write a byte */

void OW_writebyte(uchar c){
 uchar i;
 for(i=8; i>0;i--){
 OW_writebit(c&1);
 c=c>>1;
 };
 return;
}

/* Function to read a bit from DS1822 */

bit OW_readbit(void){
 bit rc;
 uchar t;
#define WAIT10US 10;
 U60();
 OWDQ=0;
 t=WAIT10US;
 OWDQ=1;
 while(t>0) t--; /*spin wait loop about 10 us */
 rc=OWDQ; /* sample DQ */
 while(!TF0);
 TR0=0;
 return(rc);
 }

10

Sample 8051 Source (continued)

/* Function to read a byte from DS1822 */

uchar OW_readbyte(void){
 uchar rc=0;
 uchar i;
 for(i=8;i>0;i--){
 rc=(rc>>1)|((uchar)OW_readbit()<<7);
 };
 return(rc);
}

/* Generate a 480+ us low pulse on OWDQ port, and
 wait for 480 us for presence pulse from ds1822
 return 1 if presence else 0. Uses T0 for timing
*/
bit reset_1wire(void){
 bit rc;
 /* hold DQ low for 480 uSec */
 OWDQ=0;
 U480();
 while(~TF0);
 TR0=0;
 TF0=0;
 OWDQ=1;
 /* wait up to 480 usec for DQ low (presence pulse) */
 U480();
 rc=0;
 while(~TF0) if (~OWDQ) rc=1; /* a 1-wire device found! */
 TR0=0;
 return(rc); /* timeout waiting for presence pulse */
 }

	VHDL Model of the Dallas 1-Wire Digital Thermometer

