
Hardware PWM Generator

___1

_____________General Description

A Pulse Width Modulation (PWM)
signal generator works by varying the
duty cycle of a square wave while
keeping the period fixed. The hardware
PWM generator was designed for
implementation on a Xilinx XC4005XL
FPGA. It contains circuitry that allows
easy interface to an 8051
microcontroller.

The hardware PWM generator provides
a 10-bit user selectable period and a
programmable dead zone to prevent the
PWM signal and its complement to be
active at the same time, an important
feature in H-bridge/motor applications.

___________________Applications

Motor speed control
Switching power supply
Communications
Dimmers
Heat control

______________Pin Configuration

 Figure 1. Pin configuration

_______________________Features

• Built-in 8051 interface hardware
• 10-bit user selectable period
• Complementary outputs provided

for use in H-Bridge applications
• 4-bits programmable dead zone

counter

____________Contact Information

Dr. Daryl Beetner
University of Missouri-Rolla
Department of Electrical and Computer
Engineering
1870 Miner Circle
Rolla, MO-65409-1060

http://www.ece.umr.edu/courses/cpe214

Hardware PWM Generator

___2

___Functional Diagram

Figure 2. Functional diagram

PIN Name Description
P0(7:0) Multiplexed Address/Data bus
P2(7:0) High Byte address bus
ALE Address Latch Enable – address is latched on falling edge
Clk System clock
RD/ Active low read enable
WR/ Active low write enable
RESET/ Active low reset
PwmH PWM output
PwmL Complementary PWM output
P0_out(7:0) 8-bit output used for testing the model
P0_out_E Enable for tri-state buffer

Hardware PWM Generator

___3

______________Detailed Description

Model Function

Registers
The hardware PWM generator consists
of several registers and counters as
shown in Figure 2. Two 2-bit registers
and two 8-bit registers are used to store
the 10 bit period and duty cycle. A 4-bit
register is used to store the
programmable dead-zone value. These
registers are written to through an 8051
interface, in which Port 0 is an 8-bit
multiplexed address-low/data bus and
Port 2 is the upper 8 bits of the address
bus.

Decoder
The decoder is used to map registers
within the 8051’s external address space.
The registers locations are shown below.

Address Register
0xFFFB Low 8 bits of period
0xFFFC High 2 bits of period (least

significant bits used)
0xFFFD Low 8 bits of duty cycle
0xFFFE High 2 bits of duty cycle

(least significant bits used)
0xFFFF 4-bit programmable dead

zone (only least significant 4
bits used)

Counters
The period, duty cycle and dead zone
counters are countdown counters, which
are loaded with the values from their
respective registers. These counters are
used for timing inside the model. They
count down to zero, then stop and wait
until the period counter reaches zero, at
which point all counters are reloaded
with the current values in their
respective registers. This helps to

prevent abrupt changes in PWM output.
Changes to the period and duty cycle
thus take effect upon the next reload of
the period counter.

Slow Clock Generator
The clock to the counters is provided
from a slow clock generator, such that a
low frequency PWM signal can be
generated. Using the main 12MHz
system clock to generate a low
frequency signal would make the PWM
too large to synthesize easily.

Output Generator
The output generator is responsible for
generating pwmH and its
complementary (pwmL) signal. The
pwmH signal is set high as the period
and duty counters begin to count down
from their maximum values. Once the
duty cycle counter reaches zero, the
pwmH signal is set low, and the dead
zone counter begins to count down.
Once the dead zone counter reaches
zero, the pwmL signal is set to high.
When the period counter reaches the
value stored in the dead zone register,
the pwmL signal is set to low. When the
period counter reaches zero, the pwmH
signal is set high again. This way the
pwmH and pwmL signals are never
active at the same time.

8051 Interface
The hardware PWM generator output
can be easily controlled with an 8051.
P0, P2, ALE, RD/, and WR/ are simply
connected to the associated signals on
the 8051. Figure 3 shows the appropriate
connections within the XC4005
schematic.

Hardware PWM Generator

___4

Figure 3. XC4005 schematic with hardware PWM generator

Hardware PWM Generator

___5

___8051 Interface

Below is a sample C program for the 8051 to control the duty cycle of the hardware
PWM generator using push-buttons. The pushbuttons are connected to ground and to
pins P1^0, P1^1, and P1^2.

#include <reg51.h>
#include <absacc.h>
#define BASE 0xfff8 // base address
#define TL XBYTE[BASE+3] // low 8 bits of period (0xFFFB)
#define TH XBYTE[BASE+4] // high 2 bits of period (0xFFFC)
#define DCL XBYTE[BASE+5] // low 8 bits of duty cycle (0xFFFD)
#define DCH XBYTE[BASE+6] // high 2 bits of duty cycle (0xFFFE)
#define DZ XBYTE[BASE+7] // 4 bits of dead zone (0xFFFF)

#define uchar unsigned char
#define uint unsigned int
#define CLKPERIC 12 // 12 for regular 8051, 6 for 89C51Rx2's
#define FCLK 12 // clock frequency in MHz

// In hardware (XC4005 schematic) PWM signal is connected to port 1 pin 5 as shown in
// Figure 3

sbit INC=P1^0; // input pin, if zero increase the duty cycle
sbit DEC=P1^1; // input pin, if zero decrease the duty cycle
sbit STOP=P1^2; // input pin, if zero stop generating PWM signal,
 // by making duty cycle zero

// this function is used to get rid of push buttons bouncing
/* delay for t msec. Use timer 0 */
void msec(uint t){
#define T1000 (-1000+22)*FCLK/CLKPERIC
 TMOD=(TMOD&0xF0) | 0x01; /* 16bit timer mode */
 while (t>0) { /*delay 1 msec */
 TH0= (T1000) >> 8; /* upper half of -1000 (0xfc) */
 TL0= (T1000) & 0xff; /* lower half of -1000 (0x18) */
 TR0= 1; /* start timer 0 */
 while (~TF0); /* wait for TF0=1 */
 TR0= 0; /* stop timer and clear overflow bit */
 TF0= 0;
 t=t-1;
 }
}

Hardware PWM Generator

___6

void main(void){

 TL= 255; // fix the frequency of the PWM signal to 256 * slow clock
 // period
 TH= 0; // high 2 bits of period register
 DZ= 1; // dead zone=1
 DCH=0; // high 2 bits of duty cycle
 DCL=100; // initial value of duty cycle
 STOP=1; // inputs pulled high initially
 INC=1;
 DEC=1;

 while(1) {
 if (~STOP){
 DCL=0; // stop generating PWM signal
 msec(700); // delay to take care of push-button bouncing
 }
 else {
 if (~INC) {
 DCL=DCL+5; // increment duty cycle
 msec(700); // delay to take care of push-button bouncing
 }
 else {
 if (~DEC) {
 DCL=DCL-5; // decrement duty cycle
 msec(700); // delay to take care of push-button bouncing
 }
 }
 }
} // end of while
} // end of main

