Receiver Function Investigations of Seismic Anisotropy Layering Beneath Southern California

Fansheng Kong¹,², Stephen S. Gao², Kelly H. Liu², Jianguo Song²,³, Weiwei Ding¹, Yinxia Fang¹, Aiguo Ruan¹, Jiabiao Li¹

F. Kong, S. S. Gao, K. H. Liu, J. Song, Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, MO 65409, USA. E-mail (S.S. Gao): sgao@mst.edu

F. Kong, W. Ding, Y. Fang, A. Ruan, J. Li, Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

J. Song, School of Geosciences, China University of Petroleum (East China), Qingdao, China

¹Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

²Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, Missouri, USA.

³School of Geosciences, China University of Petroleum (East China), Qingdao, China
Abstract. Seismic azimuthal anisotropy characterized by shear wave splitting analyses using teleseismic XKS phases (including SKS, SKKS, and PKS) is widely employed to constrain the deformation field in the Earth’s crust and mantle. Due to the near vertical incidence of the XKS arrivals, the resulting splitting parameters (fast polarization orientations and splitting times) have an excellent horizontal but poor vertical resolution, resulting in considerable ambiguities in the geodynamic interpretation of the measurements. Here we use P-to-S converted phases from the Moho and the 410 km (d_{410}) and 660 km (d_{660}) discontinuities to investigate anisotropy layering beneath southern California. Similarities between the resulting splitting parameters from the XKS and P-to-S converted phases from the d_{660} suggest that the lower mantle beneath the study area is azimuthally isotropic. Similarly, significant azimuthal anisotropy is not present in the mantle transition zone on the basis of the consistency between the splitting parameters obtained using P-to-S converted phases from the d_{410} and d_{660}. Crustal anisotropy measurements exhibit a mean splitting time of 0.2±0.1 s and mostly NW-SE fast orientations, which are significantly different from the dominantly E-W fast orientations revealed using XKS and P-to-S conversions from the d_{410} and d_{660}. Anisotropy measurements using shear waves with different depths of origin suggest that the Earth’s upper mantle is the major anisotropic layer beneath southern California. Additionally, this study demonstrates the effectiveness of applying a set of azimuthal anisotropy analysis techniques to reduce ambiguities in the depth of the source of the observed anisotropy.
1. Introduction

Numerous geophysical investigations have demonstrated that seismic azimuthal anisotropy, which is characterized by the fast polarization orientation (\(\phi \)) and the splitting time (\(\delta t \)), is a near ubiquitous property of the Earth’s crust and mantle especially the upper and lower-most mantle (Long & Silver, 2009; Savage, 1999; Silver, 1996). While anisotropy in the crust is generally regarded as the consequence of shape preferred orientation (SPO) of crustal fabrics (Crampin, 1981) or lattice preferred orientation (LPO) of anisotropic minerals such as mica and amphibole (Tatham et al., 2008), upper mantle anisotropy is mostly attributed to the LPO of olivine (Zhang & Karato, 1995) which is the most abundant mineral in the upper mantle. Under thermal, pressure, and water content conditions that are typical for the upper mantle beneath continents, the dominant LPO for olivine is the A-type, which is mainly related to two geodynamic processes. The first is simple shear which mostly develops in the transitional layer between the lithosphere and asthenosphere (Yang et al., 2017; Zhang & Karato, 1995) with the observed \(\phi \) being parallel to the flow direction, and the second is vertically coherent deformation of the lithosphere, leading to a \(\phi \) that is perpendicular to the shortening direction (Silver & Chan, 1991). In addition, lithospheric dikes can result in strike-parallel \(\phi \), as revealed in continental rift zones (Gao et al., 1997; 2010).

A few studies have suggested that beneath some areas, the mantle transition zone (MTZ), which is the region between the 410 km and 660 km discontinuities (\(d_{410} \) and \(d_{660} \), respectively), is also anisotropic, probably as the result of LPO of \(\beta \) spinel (e.g., Fouch & Fischer, 1996; Tong et al., 1994) in the MTZ, or metastable olivine in the subducted
and horizontally deflected slabs (Liu et al., 2008). Except for a few isolated areas (e.g., de Wit & Trampert, 2015; McNamara et al., 2002), the lower mantle between the d660 and the top of the D” layer has negligible azimuthal anisotropy, probably reflecting the fact that diffusion creep dominates in the lower mantle (Girard et al., 2016; Karato et al., 1995; Meade et al., 1995; Romanowicz & Wenk, 2017). Some studies indicated that beneath isolated areas, the D” layer, which is a layer of low seismic velocities with a thickness of a few hundred kilometers above the core mantle boundary (CMB), possesses significant azimuthal anisotropy that is attributable to either LPO of post-perovskite or shape preferred orientation of structures (Lynner & Long, 2012; Romanowicz & Wenk, 2017).

2. Approaches for Determining the Depth of Anisotropy

Reliably quantifying azimuthal anisotropy and determining which of the five layers, including the crust, upper mantle, MTZ, lower mantle (excluding the D”), and the D”, is anisotropic have been a major task in structural seismological investigations of the Earth’s deep interior. While surface wave and P-wave anisotropic tomography techniques can provide depth variation of azimuthal anisotropy (e.g., Montagner & Tanimoto, 1991; Wei et al., 2016), the horizontal resolution is low relative to shear wave splitting (SWS) or receiver function (RF) based approaches, both of which are the focus of this study.

Previously proposed approaches to estimate the depth of anisotropy can be grouped into three categories, including those 1) based on the splitting parameters of P-to-S converted phases from the CMB, mainly SKS, SKKS, and PKS (collectively called XKS hereafter); 2) using the splitting of direct S-waves from local events beneath the station; and 3) utilizing receiver functions (RFs) from velocity discontinuities at various depths.
2.1. XKS Splitting Based Depth Estimation Approaches

XKS splitting is perhaps the most commonly employed technique in characterizing mantle azimuthal anisotropy. The resulting splitting parameters (ϕ and δt) reflect anisotropy integrated over the entire ray path from the CMB to the surface on the receiver side (e.g., Long & Silver, 2009; Savage, 1999; Silver & Chan, 1991). A number of approaches have been proposed to estimate the depth of the main contributing source of anisotropy by using the XKS splitting parameters (Alsina & Snieder, 1995; Gao et al., 2010; James & Assumpcao, 1996; Long, 2009; Niu & Perez, 2004; Restivo & Helffrich, 2006).

The first approach utilizes the finite frequency effects of XKS splitting measurements (Alsina & Snieder, 1995; Monteiller & Chevrot, 2011). The Fresnel zone approach (Alsina & Snieder, 1995) considers the differences in the splitting parameters from different back azimuths (BAZ) recorded by the same station, or from the same event recorded by different stations. The major limitations in applying this technique include the required existence of significant lateral variation of the splitting parameters in the vicinity of the stations, the availability of events from either the same or opposite directions, and measurements from closely spaced stations. In addition, simple anisotropy, which is characterized by a single layer of anisotropy with a horizontal axis of symmetry, is required for applying this technique. Furthermore, because of the non-monochromatic nature of the XKS arrivals, the size of the Fresnel zone and thus the depth of anisotropy are dependent on the dominant frequencies of the waveforms (Rumpker & Ryberg, 2000), which may vary from events to events. Another approach relying on the finite-frequency effect of SKS splittings produces 3-D anisotropic structure using splitting intensity measurements.
(Favier & Chevrot, 2003; Monteiller & Chevrot, 2011; Lin et al., 2014). The method requires densely spaced stations, and different inversion parameters such as the damping factor can lead to considerably different results, as demonstrated by two recent studies for southern California which reached significantly different conclusions about the strength and existence of lithospheric and sub-lithospheric anisotropy (Lin et al., 2014; Monteiller & Chevrot, 2011).

The second approach is the spatial coherency method (Gao et al., 2010; Gao & Liu, 2012; Liu & Gao, 2011), which searches for the optimal depth of the centroid of the anisotropic layer by computing a variation factor for each of the candidate depths. The optimal depth corresponds to the minimum variation factor (e.g., see Yang et al., 2017 for a recent application of this technique to the eastern United States). Similar to the Fresnel zone approach, it requires simple anisotropy, the existence of spatially varying splitting parameters, as well as a decent azimuthal coverage (Liu & Gao, 2011).

The third approach utilizes the difference in the splitting parameters obtained using SKS and SKKS from the same or nearby events, which have nearly identical raypaths in the upper mantle but different in the lower mantle, to investigate anisotropy in the lower mantle (Hall et al., 2004; James & Assumpcao, 1996; Lynner & Long, 2012; Niu & Perez, 2004; Restivo & Helffrich, 2006). This approach requires the co-existence of SKS and SKKS waves at the same stations and from the same or nearby events, and its application has largely been limited to characterizing the D” layer. It has been proposed that besides D” anisotropy, differences in SKS and SKKS splitting parameters could be caused by other factors, such as frequency dependence as a result of laterally or vertically variable
anisotropic structures (Marson-Pidgeon & Savage, 1997; Rumpker & Silver, 1998), or the interference between SKS, SKKS, and other phases (Lin et al., 2014).

2.2. Approaches Using Splitting of Shear Waves from Local Earthquakes

Splitting parameters measured using direct S-waves from earthquakes in the S-wave window, in which the incidence angle is less than θ (defined as $\sin(\theta) = V_s/V_p$), are used to quantify anisotropy from the focus to the recording station (e.g., Crampin, 1981; Miller & Savage, 2001). This approach has been widely used to study crustal anisotropy, as well as upper mantle and MTZ anisotropy above subduction slabs along which deep earthquakes are frequent (e.g., Fouch & Fischer, 1996; Liu et al., 2008). Obviously, the application of this technique is limited to seismically active areas.

2.3. Receiver Function Based Approaches

A relatively less frequently used approach for depth estimate is to utilize the splitting of P-to-S converted phases from velocity discontinuities in the crust and mantle to characterize anisotropy above the discontinuities (Iidaka & Niu, 1998; Kong et al., 2016; Kosarev et al., 1984; McNamara et al., 1994; Vinnik & Montagner, 1996; Wu et al., 2015). Such converted phases are most clearly observed when the original 3-component seismograms are source normalized to form RFs. For example, Iidaka & Niu (1998) compared the splittings of SKS and P-to-S conversions from the $d660$ and attributed the difference in the splitting parameters to the contribution of anisotropy in the lower mantle. Another RF-based approach is the fittings of the moveout of the arrivals of the P-to-S conversions using a sinusoidal function to quantify anisotropy above a discontinuity (e.g., Kong et al., 2016; Liu & Niu, 2012; Rumpker et al., 2014).
One of the disadvantages of this approach is that the signal-to-noise ratio (SNR) on individual RFs is normally low, and thus it is difficult to obtain reliable splitting parameters using single RFs (Long & Silver, 2009). To enhance the SNR on the radial and transverse components for the purpose of investigating the anisotropy layering, in this study, we stack epicentral distance corrected RFs in narrow BAZ bands prior to the splitting and moveout analyses, for the purpose of investigating anisotropy layering beneath southern California and adjacent areas by analyzing RFs associated with the Moho, d_{410}, and d_{660}, and comparing the results with a uniform XKS splitting data set that we recently generated for the contiguous United States (Liu et al., 2014; Yang et al., 2016; 2017).

3. Data and Methods

This study covers an area with longitudes ranging from -123° to -114° and latitudes ranging from 31° to 36°, an area that includes the southern part of the Coast Ranges, the southwestern Basin and Range Province, and the adjacent Pacific Plate (Figure 1). The area is chosen for a couple of reasons. First, in terms of the quantity and quality of broadband seismic data, the study area is perhaps unmatched by any other area of similar size in the world. Second, numerous previous XKS splitting and crustal anisotropy studies have been conducted in the area (e.g., Li & Malin, 2008; Liu et al., 1995; 2014; Ozalaybey & Savage, 1995; Savage et al., 1990; Savage & Silver, 1993), and results from these studies can be readily compared with measurements from this study.
3.1. Data

The teleseismic data used for the study were recorded over the period of early 1988 to late 2017 by the stations shown in Figure 1, and are archived at the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). All the requested data are from teleseismic events within the epicentral distance range of $32^\circ - 98^\circ$ and with a cutoff magnitude of M_c, which is defined as $M_c = 5.2 + (\Delta - 30.0)/(180.0 - 30.0) - D/700.0$, where Δ represents the epicentral distance in degree, and D is the event depth in km (Liu & Gao, 2010).

The requested seismograms are band-pass filtered in the frequency band of 0.08-0.8 Hz prior to computing RFs from the Moho, and 0.02-0.2 Hz before computing RFs from the deeper discontinuities (d_{410} and d_{660}). Seismograms with a SNR larger than 3.0 on the vertical component are converted to radial and transverse RFs using the water-level deconvolution method (Ammon, 1991). The SNR is defined here as $SNR = \max |A_s|/|A_n|$, where $\max |A_s|$ represents the maximum absolute value of a 20 s long time window of $(T_P - 8 \text{ s}, T_P + 12 \text{ s})$ centered at the predicted arrival time of the first P-wave (T_P) computed using the IASP91 standard Earth model (Kennett & Engdahl, 1991), and $|A_n|$ denotes the background noise calculated as the mean absolute value on the seismogram in the time window of $(T_P - 20 \text{ s}, T_P - 10 \text{ s})$. In addition, two SNR based procedures are applied to reject RFs with strong noise before the P-wave arrival and those with abnormally large arrivals in the P-wave coda (Gao & Liu, 2014). A total of 77,575 pairs of radial and transverse RFs from 4715 events (Figure 2) recorded by 319 broadband stations (Figure 1) are used to constrain crustal anisotropy for the study. The number of RFs used for measuring anisotropy above the d_{410} and d_{660} is 70,902.
3.2. Moveout Correction and Stacking

To correct the ray-parameter dependence of the moveout of the Pds phase, which is the P-to-S conversion from a velocity discontinuity including the Moho (Pms), \(d_{410}\) (P410s), and \(d_{660}\) (P660s), we first calculate the time shift for each of the samples in the RFs relative to the time of the corresponding sample of a reference RF with a ray parameter of 4.4 s/degree, which is approximately the P-wave ray parameter for a surface event at a distance of 100\(^\circ\). The moveout difference related to the different ray parameters is then corrected by shifting each point on the RFs by the calculated time difference.

For enhancing the SNR of the Pds arrivals on the radial and transverse components, the moveout corrected RFs are grouped into 1\(^\circ\) circular bins based on the coordinates of the ray-piercing point at the depth of the discontinuity (Moho, \(d_{410}\), or \(d_{660}\)) in the IASP91 Earth model. The distance between the centers of neighboring bins is set as 1\(^\circ\) as well, leading to a 39% overlap between any two neighboring bins. All the radial and transverse RFs belonging to the same bin are ray-parameter corrected, and those in the same 10\(^\circ\) BAZ band are stacked for anisotropy analyses.

3.3. Measuring Pds Splitting Parameters

The calculation for the splitting parameters using the stacked RFs is based on the transverse energy minimization method (Silver & Chan, 1991), which computes the optimal pair of splitting parameters that can best remove the energy on the corrected transverse component. The resulting SWS measurements are initially ranked automatically based on the SNR on the original and corrected radial and transverse receiver functions with a rank of 'A' (good), 'B' (fair), 'C' (bad), and 'N' (null) (Liu & Gao, 2013). Then all of the splitting measurements are manually checked, and if necessary, the time window,
the filtering parameters, and the ranking are adjusted. Only those with a rank of 'A' or 'B' are used in the discussion.

3.4. Fitting of Sinusoidal Moveout of P-to-S Conversions

Systematic azimuthal variations of Pds moveout on the radial RFs relative to the first P-arrival can be utilized to obtain the anisotropy parameters by fitting the sinusoidal moveout of the Pds with respect to the BAZ (Liu & Niu, 2012; Rumpker et al., 2014).

When a shear wave travels through an anisotropic layer with a horizontal axis of symmetry, the arrival times of the Pds relative to the direct P-arrival on the radial receiver functions exhibit systematic variations with respect to the BAZ of the events, i.e.,

$$ t = t_0 + \Delta t = t_0 - \frac{\delta t}{2} \cos[2(\alpha - \phi)], $$

(1)

where t_0 is the arrival time when no anisotropy exists, Δt represents the offset of arrival time that is accounted by anisotropy along the raypath, ϕ and δt are the equivalent fast orientation and splitting delay time, respectively, and α stands for the BAZ of the events.

The splitting parameters (ϕ and δt) can be obtained by fitting the Pds moveout with respect to the BAZ based on a non-linear least-squares fitting procedure (Press et al., 1992). As discussed below, the 180° periodicity shown in the observed RFs suggests that the study area is dominated by horizontal symmetry axis for both the crust and upper mantle. In order to quantify the uncertainties of the resulting anisotropy measurements, the bootstrap resampling procedure (Efron & Tibshirani, 1986; Press et al., 1992) is applied to calculate the splitting parameters 10 times for each bin.

4. Results
4.1. Results From Splitting of P410s and P660s

Figure 3 shows examples of the splitting analysis using the P410s and P660s phases. While the SNR for the Pds phases is admittedly lower than XKS, which leads to large uncertainties, the reliability of the resulting splitting parameters is reasonably high based on the decent match between the resulting fast and slow components, as well as the robustness of the minimum value point on the energy contour plot. In general, the P660s has a greater amplitude than P410s in the study area (e.g., Figure 7 in Gao & Liu, 2014) and consequently, more splitting measurements from the former are obtained. The number of bins with reliable splitting parameters is 16 for the P410s and 23 for the P660s (Figure 4 and Table 1).

For the P410s, the resulting fast orientations range from 59° to 149° with a circular mean value (Fisher, 1995) of 83.2±22.3°, and the splitting times are between 0.7 and 1.65 s with a simple mean of 1.24±0.27 s. The corresponding numbers for the P660s are 78-129°, 96.0 ± 15.1°, 0.75-1.85 s, and 1.24±0.33 s. The mean splitting parameters obtained using the P410s and P660s for the entire study area are 92.1±18.7° for \(\phi \) and 1.24 ± 0.31 for \(\delta t \). In comparison, the splitting parameters from XKS for the same area are 87.8 ± 17.3° and 1.28 ± 0.36 s (Liu et al., 2014). The mean XKS splitting parameters for each of the bins are computed by averaging the individual-event splitting parameters in Liu et al. (2014) obtained using the minimization of transverse energy approach (Silver and Chan, 1991). While the bin-averages can also be obtained using the multi-event stacking procedure (Wolfe and Silver, 1998), a recent study using both synthetic and recorded data suggested that the Wolfe and Silver (1998) approach leads to statistically identical fast orientations, but has the tendency of underestimating the splitting times (Kong et al., 2015). In spite
of the noticeable inconsistencies in a few bins which are most likely the results of the low SNR of the Pds arrivals, no systematic and statistically significant discrepancies exist among the splitting parameters obtained from the P410s, P660s, and XKS.

4.2. Results From Sinusoidal Fitting of P410s and P660s Moveouts

We next attempt to obtain the equivalent splitting parameters by fitting the back-azimuthal variations of moveouts of the P410s and P660s using the sinusoidal function (Eq. 1). While in an ideal situation, the azimuthal coverage of the RFs in each of the bins is sufficient to result in reliable splitting parameters, visual checking of the azimuthal distribution of the RFs found that the BAZ coverage is inadequate for the vast majority of the bins. Therefore, we combine all the RFs recorded by all stations in the study area and divide them into 36 BAZ bands with a width of 10° prior to performing the moveout analysis, for the purpose of obtaining an averaged pair of splitting parameters for the entire study area. Only BAZ bands with 50 or more RFs are used in the fitting.

Both the P410s and P660s demonstrate clear sinusoidal moveouts (Figures 5a and 5b), leading to well-constrained mean splitting parameters of $(98.4 \pm 2.0°, 0.83 \pm 0.09 \text{ s})$ for the P410s, and $(104.1 \pm 6.5°, 0.82 \pm 0.17 \text{ s})$ for the P660s. To verify the results, we generate synthetic RFs based on Rumpker et al. (2014) using a set of splitting parameters similar to the above mean values. The azimuthal variation of the Pds moveouts agrees well with the observed ones (Figure 5). While in principle lateral velocity heterogeneities above a discontinuity and its depth variation can affect the moveout of the Pds arrivals, seismic tomography and receiver function studies (e.g., Burdick et al., 2017; Gao & Liu, 2014) suggest that both the mantle velocities and MTZ depths are quite uniform across the study area.
4.3. Crustal Anisotropy Measurements

We visually check the azimuthal variation of the PmS phase for each of the bins, and find that 11 of the bins have an adequate BAZ coverage for measuring crustal anisotropy. Figure 6 shows the RFs for one of the bins, in which periodic azimuthal variations of PmS arrival times are observed. The resulting fast orientations of crustal anisotropy (Figure 7 and Table 1) for stations with large (≥ 0.15 s) δt values are dominantly NW-SE, consistent with the strike of the nearby strike-slip faults. The δt measurements, which range from 0.05 to 0.4 s with an average of 0.19 ± 0.11 s, are larger at stations closer to the San Andreas Fault.

5. Discussion

5.1. Absence of Significant Azimuthal Anisotropy in the Lower Mantle and MTZ

The similarity between the splitting parameters obtained using XKS and P660s (Figure 4) indicates that the lower mantle, which accounts for 2/3 of the total mantle volume, is statistically azimuthally isotropic beneath the study area. The same conclusion can be made for the MTZ based on the general agreement between the splitting parameters obtained using the P660s and P410s, although the two show some differences at a few bins mostly located at the northwestern corner of the study area (Figure 4).

Some previous studies have reported significant anisotropy in the MTZ (e.g., Chen & Brudzinski, 2003; Karato, 1998; Liu et al., 2008; Vinnik & Montagner, 1996). Those areas are mostly occupied by recently subducted oceanic slabs. One of the anisotropy generating mechanism in the MTZ is meta-stable olivine in the cold center of the oceanic slab (Liu et al., 2008; Schubert et al., 2001). The lack of anisotropy in the MTZ beneath
southern California suggests the absence of cold slabs in the MTZ, a conclusion that is consistent with seismic tomography and receiver function studies (e.g., Burdick et al., 2017; Gao & Liu, 2014).

Azimuthal anisotropy is observed at a few locations in the D" layer (e.g., Lynner & Long, 2012; Romanowicz & Wenk, 2017), mostly along the boundaries of large scale low velocity anomalies in the lower-most mantle. The lack of lower mantle azimuthal anisotropy beneath this area is consistent with the observation that the D" layer is largely azimuthally isotropic except for a few isolated areas.

5.2. Crustal and Upper Mantle Anisotropy

The consistencies in the resulting XKS, P660s, and P410s anisotropy measurements suggest that anisotropy revealed using the XKS phases is mostly located above the d410, i.e., in the upper mantle and crust. The contribution of the crust to the observed XKS splitting is small, as suggested by the large contrast between the splitting times from the Pms and XKS phases (0.19 versus 1.28 s on average). The fast orientations from the two phases are different at most of the bins, which would lead to azimuthal dependence of the XKS splitting parameters over a narrow BAZ band in the modulo-90° domain (Silver & Savage, 1994). If a disproportionally large number of XKS events are in the narrow BAZ band, station or bin averaged XKS splitting parameters cannot objectively reflect the true anisotropy property. Otherwise, averaged parameters are sufficient to represent the anisotropic characteristics, primarily because of the large difference between the Pms and XKS splitting times.

The resulting crustal anisotropy measurements represent a quantification of the "bulk" or "integrated" anisotropy for the whole crust (Kong et al., 2016;
Rumpker et al., 2014), which exhibit mostly NW-SE oriented ϕ values (Figure 7) and are generally consistent with the results obtained from surface wave tomography (Lin et al., 2009). The splitting results using local S waves (Li & Peng, 2017; Yang et al., 2011) which characterizes the anisotropic structure in the upper crust, reveal that ϕ from stations situated near the San Andreas Fault is mostly NW-SE, consistent with the strike direction of the San Andreas Fault, while dominantly NNE-SSW for the other measurements that is roughly orthogonal to the measurements shown in Figure 7. The spatial distribution of the parallelism and perpendicularity of the ϕ values between the local S splitting results and the Pms anisotropy measurements is in accordance with the observation that the δt values from bins adjacent to the San Andreas Fault is larger than those from bins further away from it (Figure 7), suggesting that the lower crustal anisotropy beneath southern California is characterized with a uniformly NW-SE oriented ϕ.

Previous geologic and tectonic studies indicate that the lower crust underneath the study area is regarded as being underplated by schists originated from the accretionary complex associated with the Laramide subduction during late Cretaceous to earth Tertiary (Saleeby, 2003). The San Andreas Fault started to be formed since the completion of the subduction near Southern California (Atwater, 1989), and is regarded as the boundary between the north America plate and the Pacific plate.

In the lower crust, the azimuthal anisotropy is mostly regarded as the consequence of the LPO of anisotropic crystals (e.g., mica and amphibole),
primarily amphibole due to its abundance in the deep crust (Ko & Jung, 2015; Tatham et al., 2008). Single-crystal anisotropy of amphibole display orthorhombic symmetry, which can develop into 3 types of LPO depending on the differential stress and temperature under simple shear (Ko & Jung, 2015). In amphibole-bearing schists, both fast- or slow-axis symmetry in the transverse isotropy or hexagonal anisotropy model (also referred to as "melon-shaped anisotropy" and "pumpkin-shaped anisotropy" in Levin & Park, 1998, respectively) are observed in terms of S wave anisotropy, depending on the deformation type (Brownlee et al., 2017; Ji et al., 2015), while the mica-bearing schists are widely accepted as approximately transverse isotropic with a slow symmetry axis (Brownlee et al., 2017; Ko & Jung, 2015; Levin & Park, 1997).

If a transverse isotropy model with a horizontal slow axis symmetry is assumed, which is typical for nearly all the mica-bearing and part of the amphibole-bearing rocks (Brownlee et al., 2017; Ji et al., 2015), the NW-SE fast orientations are generally consistent with the horizontal projection of the plunge of the symmetry planes associated with mica- or amphibole-bearing underplated schists deformed by the Laramide subduction (Porter et al., 2011).

If a transverse isotropy model with a horizontal fast axis symmetry or an orthorhombic symmetry model is assumed, the ϕ measurements represent the orientation of the fast axis of amphibole, which can be adequately explained as the consequence of the simple shear between the subducted Laramide plate and the overriding north America plate associated with the Laramide subduc-
tion. A recent study of amphibole (Ko & Jung, 2015) suggests that simple shear deformation in subduction zones can develop trench-parallel seismic anisotropy for vertically propagating S waves regardless of the LPO type.

Besides the mica- or amphibole-bearing schists, another potential contributor to the observed anisotropy beneath the San Andreas Fault Zone is shear-related LPO of amphibole. Given the condition of high temperature in the collisional zone (Ko & Jung, 2015), Type II or III LPO of amphibole deformed by the simple shear associated with right-lateral San Andreas Fault will dominate, resulting in fast orientations parallel to the strike of the San Andreas Fault.

Comparison of the measurements using P-to-S converted phases from the four discontinuities systematically confirms the observation that the upper mantle is the most anisotropic layer, a conclusion that has been reached by surface wave tomography (e.g., Tanimoto & Anderson, 1984), body-wave tomography (Huang & Zhao, 2013), over-lapping Fresnel zone analysis (Alsina & Schneider, 1995), finite frequency XKS tomography (Lin et al., 2014; Monteiller & Chevrot, 2011), and spatial coherency analysis of XKS splitting parameters (Gao & Liu, 2012). Such observations are consistent with results from mineral physics experiments, which suggest that concentration of azimuthal anisotropy in the upper mantle is mostly due to the pervasive presence of dislocation creep of olivine crystals under simple shear (Zhang & Karato, 1995). Diffusion creep, which is the dominant form of deformation in the MTZ and lower mantle, is incapable of producing large LPO. This explains the lack of azimuthal anisotropy beneath the d410 (Karato et al., 1995).
6. Conclusions

Azimuthal anisotropy measurements obtained using P-to-S converted phases from four seismic discontinuities, including the core-mantle boundary, \(d_{660}\), \(d_{410}\), and the Moho, are utilized to investigate anisotropy layering beneath southern California. The consistency of the anisotropy measurements between splitting parameters from the XKS and P660s indicates that the lower mantle beneath the study area is azimuthally isotropic. Similarly, an isotropic mantle transition zone is inferred based on the similarity of the resulting splitting parameters from the P410s and P660s. The fast orientations of crustal anisotropy from the Pms phase are different from those obtained from the deeper discontinuities, and are mostly parallel to strike-slip faults in the area. On average the crustal splitting times are about 15% of those obtained using the XKS phases. This study systematically compares splitting parameters from all the major discontinuities in the top 2900 km of the Earth, and provides a firm example to demonstrate that the upper mantle possesses the strongest azimuthal anisotropy, due to the pervasive presence of dislocation creep of olivine under simple shear.

Acknowledgments. Data used in the study were obtained from the IRIS DMC (last accessed: December, 2017). We thank S. Chevrot and G. Rumpker for careful reviews of the manuscript. The study was partially supported by Grant No. HYGG1802 of the Scientific Research Fund of the Second Institute of Oceanography State Oceanic Administration of China to F.K., the Natural Science Foundation of China under awards 91628301 and 41576037 to A.R., and the U.S. National Science Foundation under awards 1830644, 1460516, and 1321656 to K.L. and S.G.
References

Liu, K. H., & Gao, S. S. (2010). Spatial variations of crustal characteristics beneath the Hoggar swell, Algeria, revealed by systematic analyses of receiver functions from a single seismic station. *Geochemistry, Geophysics, Geosystems, 11*, Q08011,

Savage, M. K., & Silver, P. G. (1993). Mantle deformation and tectonics: Constraints from
seismic anisotropy in the western United States. *Physics of the Earth and Planetary

Planets*. Cambridge University Press.

Silver, P. G. (1996). Seismic anisotropy beneath the continents: Probing the

Silver, P. G., & Savage, M. K. (1994). The interpretation of shear-wave splitting param-

Tong, C., Gudmundsson, O., & Kennett, B. L. N. (1994). Shear wave splitting in refracted
waves returned from the upper mantle transition zone beneath northern Australia.

Figure 1. A topographic map showing major tectonic boundaries (purple dashed lines) and active faults (green lines) in southern California and adjacent areas. The triangles represent the seismic stations used in the study, and the blue dashed line is the San Andreas Fault. The red bars show the averaged XKS splitting results of individual measurements (Liu et al., 2014) in radius=1° bins based on the ray-piercing location at 200 km depth, with the length of the bars being proportional to the splitting time. The inset map shows the study area.
Figure 2. An azimuthal equidistant projection map showing the global distribution of the events used in the study. The color represents the number of RFs contributed by events in the circles with a radius of 1°.
Figure 3. Examples of P-to-S conversion splitting measurements using the P410s (left panels) and P660s (right panels) for the bin centered at (a-b) 35.0°N and 118°W, and (c-d) 34.0°N and 118°W. For each plot, the panels from the top to bottom illustrate the original and corrected radial and transverse components, original and corrected fast (red) and slow (black) components, original and corrected particle motion patterns, and the residual energy function, which represents the energy on the corrected transverse component. The optimal pair of splitting parameters (white star) corresponds to the minimum value on the contour map.
Figure 4. Resulting P410s (green bars) and P660s (red bars) splitting parameters from this study, and XKS splitting parameters (black bars) from Liu et al. (2014). The three types of measurements are shifted along the N-S direction for clarity. The dots represent the center of the circular bins.
Figure 5. (a) Band-averaged RFs recorded by all the stations shown in Figure 1 plotted against the BAZ. The black dots mark the peak of the P410s, and the red line represents the best fitting curve calculated based on Equation 1 using the optimal pair of splitting parameters. (b) Same as Figure 5a but for the P660s. (c) Same as Figure 5b but using synthetic seismic data with a pair of splitting parameters of 100° and 0.85 s.
Figure 6. Same as Figure 5a but for the Pms RFs recorded by stations in the 1° radius bin centered at (35°N, 117°W).
Figure 7. Crustal anisotropy measurements (red bars) obtained using the Pms phase and bin-averaged XKS splitting parameters (blue bars). Green lines are active faults, and dashed purple lines are tectonic unit boundaries. Note the different scales for the splitting times between the Pms and XKS results (see legend).
Table 1. Bin-averaged anisotropy measurements from XKS splitting, splitting of P410s and P660s, and sinusoidal moveouts of Pms

<table>
<thead>
<tr>
<th>Bin</th>
<th>ϕ_{XKS}(⁰)</th>
<th>δt_{XKS}(s)</th>
<th>ϕ_{P660s}</th>
<th>δt_{P660s}</th>
<th>ϕ_{P410s}</th>
<th>δt_{P410s}</th>
<th>ϕ_{P_{ms}}</th>
<th>δt_{P_{ms}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N32W119</td>
<td>-</td>
<td>91.00 ± 5.5</td>
<td>1.85 ± 0.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W118</td>
<td>74.56 ± 6.4</td>
<td>1.25 ± 0.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W117</td>
<td>74.85 ± 13.9</td>
<td>1.19 ± 0.37</td>
<td>92.00 ± 1.0</td>
<td>1.70 ± 0.07</td>
<td>83.00 ± 10.0</td>
<td>1.65 ± 0.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W116</td>
<td>72.80 ± 22.7</td>
<td>1.27 ± 0.44</td>
<td>109.00 ± 17.5</td>
<td>0.85 ± 0.35</td>
<td>59.00 ± 11.0</td>
<td>1.35 ± 0.57</td>
<td>142.93 ± 4.8</td>
<td>0.34 ± 0.05</td>
</tr>
<tr>
<td>N32W115</td>
<td>112.97 ± 22.8</td>
<td>1.07 ± 0.39</td>
<td>94.00 ± 2.0</td>
<td>1.33 ± 0.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W120</td>
<td>91.33 ± 6.3</td>
<td>1.52 ± 0.28</td>
<td>78.00 ± 2.0</td>
<td>1.70 ± 0.15</td>
<td>74.00 ± 15.5</td>
<td>1.15 ± 0.43</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W119</td>
<td>90.29 ± 12.4</td>
<td>1.40 ± 0.27</td>
<td>98.00 ± 5.0</td>
<td>1.03 ± 0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W118</td>
<td>84.93 ± 13.5</td>
<td>1.25 ± 0.31</td>
<td>97.99 ± 7.2</td>
<td>1.23 ± 0.39</td>
<td>80.00 ± 15.3</td>
<td>1.12 ± 0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W117</td>
<td>89.22 ± 14.3</td>
<td>1.31 ± 0.37</td>
<td>97.59 ± 9.5</td>
<td>1.33 ± 0.14</td>
<td>84.94 ± 12.3</td>
<td>1.41 ± 0.28</td>
<td>151.13 ± 4.8</td>
<td>0.21 ± 0.02</td>
</tr>
<tr>
<td>N32W116</td>
<td>92.45 ± 16.5</td>
<td>1.30 ± 0.39</td>
<td>109.50 ± 9.5</td>
<td>1.30 ± 0.07</td>
<td>67.00 ± 25.6</td>
<td>1.45 ± 0.07</td>
<td>135.80 ± 4.2</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>N32W115</td>
<td>95.67 ± 24.0</td>
<td>1.23 ± 0.36</td>
<td>83.67 ± 6.1</td>
<td>0.97 ± 0.15</td>
<td>-</td>
<td>-</td>
<td>66.15 ± 5.4</td>
<td>0.13 ± 0.01</td>
</tr>
<tr>
<td>N32W120</td>
<td>90.96 ± 6.5</td>
<td>1.20 ± 0.23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W120</td>
<td>84.28 ± 18.7</td>
<td>1.37 ± 0.28</td>
<td>81.00 ± 3.0</td>
<td>1.60 ± 0.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W119</td>
<td>84.35 ± 13.3</td>
<td>1.38 ± 0.30</td>
<td>116.50 ± 11.6</td>
<td>0.88 ± 0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W118</td>
<td>87.55 ± 13.1</td>
<td>1.34 ± 0.31</td>
<td>97.00 ± 8.0</td>
<td>1.40 ± 0.25</td>
<td>81.00 ± 15.3</td>
<td>1.00 ± 0.28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W117</td>
<td>91.82 ± 12.9</td>
<td>1.32 ± 0.37</td>
<td>108.00 ± 2.0</td>
<td>1.23 ± 0.53</td>
<td>85.00 ± 1.0</td>
<td>1.42 ± 0.18</td>
<td>141.57 ± 3.7</td>
<td>0.27 ± 0.03</td>
</tr>
<tr>
<td>N32W116</td>
<td>92.90 ± 13.3</td>
<td>1.32 ± 0.39</td>
<td>93.50 ± 14.8</td>
<td>1.47 ± 0.11</td>
<td>88.00 ± 12.0</td>
<td>1.25 ± 0.35</td>
<td>107.31 ± 2.1</td>
<td>0.17 ± 0.02</td>
</tr>
<tr>
<td>N32W115</td>
<td>79.75 ± 22.6</td>
<td>1.14 ± 0.40</td>
<td>94.29 ± 28.2</td>
<td>0.95 ± 0.39</td>
<td>68.00 ± 18.0</td>
<td>0.70 ± 0.25</td>
<td>94.45 ± 5.5</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>N32W122</td>
<td>103.39 ± 21.7</td>
<td>1.23 ± 0.29</td>
<td>129.00 ± 4.5</td>
<td>1.40 ± 0.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W121</td>
<td>115.43 ± 19.5</td>
<td>1.23 ± 0.31</td>
<td>-</td>
<td>-</td>
<td>147.00 ± 5.5</td>
<td>1.40 ± 0.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W120</td>
<td>99.02 ± 18.0</td>
<td>1.43 ± 0.38</td>
<td>108.00 ± 7.0</td>
<td>1.20 ± 0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W119</td>
<td>85.56 ± 15.3</td>
<td>1.38 ± 0.32</td>
<td>98.00 ± 3.5</td>
<td>0.75 ± 0.10</td>
<td>149.00 ± 4.0</td>
<td>1.00 ± 0.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32W118</td>
<td>88.26 ± 13.8</td>
<td>1.31 ± 0.32</td>
<td>79.50 ± 14.8</td>
<td>1.03 ± 0.60</td>
<td>79.00 ± 12.0</td>
<td>0.85 ± 0.23</td>
<td>142.67 ± 1.2</td>
<td>0.40 ± 0.02</td>
</tr>
<tr>
<td>N32W117</td>
<td>92.47 ± 12.7</td>
<td>1.23 ± 0.31</td>
<td>90.00 ± 9.5</td>
<td>1.30 ± 0.40</td>
<td>108.00 ± 12.5</td>
<td>1.25 ± 0.38</td>
<td>134.07 ± 5.2</td>
<td>0.19 ± 0.04</td>
</tr>
<tr>
<td>N32W116</td>
<td>89.20 ± 15.7</td>
<td>1.14 ± 0.34</td>
<td>88.00 ± 17.0</td>
<td>1.15 ± 0.40</td>
<td>75.00 ± 20.0</td>
<td>0.95 ± 0.48</td>
<td>29.63 ± 30.8</td>
<td>0.06 ± 0.04</td>
</tr>
<tr>
<td>N32W115</td>
<td>69.07 ± 22.4</td>
<td>1.05 ± 0.33</td>
<td>86.15 ± 17.1</td>
<td>1.40 ± 0.20</td>
<td>89.00 ± 10.0</td>
<td>1.30 ± 0.30</td>
<td>140.09 ± 6.0</td>
<td>0.10 ± 0.01</td>
</tr>
</tbody>
</table>